
AMICT’2010-2011. pp. 51–65 51

The optimal implementation of n

FIFO-queues in single-level memory

Prof. A.V. Sokolov†, A.V. Drac‡

†,‡Institute of Apply Mathematical Researh,
Karelian Scientific Center of Russian Academic of Science ‡ Petrozavodsk

State University, Petrozavodsk

E-mail: avs@krc.karelia.ru, adeon88@mail.ru

Abstract

In this article we research methods of n FIFO-queues allocation in the
memory of size m units. The problem of optimal memory partition be-
tween queues in the case of consecutive circular implementation and the
problem of the analysis of linked list implementation are investigated. As
mathematical models we proposed random walks into different areas of
n-measured space.

1 Introduction

In many applications there is a problem of allocation of multiple queues
in single-level memory. There are two fundamentally different ways of or-
ganizing work with dynamic data structures – consecutive and linked list
allocation. This paper is the extension of [1]. For queues with sequential
presentation all the memory is splitted into several parts and each queue is
allocated in separate section of memory. In this case we will have losses of
memory when any queue overflows and other queues don’t overflow.

The linked list implementation is the second method. In this view the
data structure is stored as a list. In this case any number of elements of the
lists can coexist in the memory area until the free memory is exhausted.
But on the other hand, this approach requires an additional link field for
each element.

In this article we considered the system where memory overflow is not
an emergency situation. If free memory is exausted then all attempts to
include an element into queue will lead to it loss until the appearance of free

c© Prof. A.V. Sokolov, A.V. Drac, 2010

52 Prof. A.V. Sokolov, A.V. Drac

memory i.e. until the deletion of an element from the tail of queue. Such
scheme is used for example in the routers and such behaviour of queues is
name ”reset tail”. As the optimality criterion we considered the minimal
part of time which the system is situated in the state of reset tail. It is
reasonably to minimize this value in order to minimize the part of lost
elements. In this paper we considered linked and sequential presentation
of queues and calculated in symbolic form the average part of time which
the system is situated in the state of ”reset tail”.

2 The problem

Consider n queues in single level memory size m. Assume that the time is
discrete and only one of the following operations can happen during each
time step:

• insertion of element into j-th data stucture with the probability pj
(1 ≤ j ≤ n),

• deletion of element from j-th data stucture with the probability qj
(1 ≤ j ≤ n),

• access the element with the probability r (Data structures don’t
change their lengths).

p1 + · · ·+ pn + q1 + · · ·+ qn + r = 1.
Values pj , qj , r are constants. They don’t depend on the current lengths
of queues and on the operations on the previous steps. All elements have
the same lengths. The length of queue is the number of elements that it
contains. Denote ij is the lengths of data structure with number j.

Consider the memory overflow and transition into the states of ”reset
tail” in different cases:

1. Linked list implementation.
Denote l is the ratio of the size of element to the size of a pointer (for
the linked presentation). Denote m(1 − 1/l) = M . An overflow will
occur (and, hence, the system will move to the state of ”reset tail”)
when the queues will occupy all memory (i.e. i1 + · · ·+ in = M) and
an element to any of them will be attempted to include.

2. Consecutive presentation.
Each queue is allocated in its own part of memory. kj is the size of
allocated memory for j-th queue. An overflow will occur when j-th
queue occupy all allocated memory (its length will be equal to kj)

The optimal implementation of n FIFO-queues in single-level memory 53

and an element to this queue will be attempted to include. The free
memory allocated to other queues will not be redistributed.

We suppose, that the process starts from the state, when data structures
are empty, and in the case of deletion from an empty data structure there
is no shutdown. The problem is to find the average part of time when the
system is situated in the state of reset tail in both cases of representation
and compare them. To solve this problem we used apparatus of regular
markov’s chains.

3 Consecutive allocation of the queues

3.1 The problem

Consider k1, . . . , kn is the fixed partition of the memory.
As the mathematical model we consider the random walk on an integer

lattice space inside n-dimensional parallelepiped with vertex at the origin,
edges parallel to the axes and the lengths of edges k1, . . . , kn. Number
of states is equal to

∏n
i=1(ki + 1). (i1, . . . , in) is the state of the system.

0 ≤ i1 ≤ k1 + 1, . . . , 0 ≤ in ≤ kn + 1. ij = kj + 1 are the states of ”reset
tail”. αi1...in is the limit probability which system is situated in the state
(i1, . . . , in).

Conversion of the system from state (i1, . . . , in) to state (i′1, . . . , i
′
n)

occurs in according to the following rules (fig. 1):

(. . . , is, . . . , it, . . .) ps
−−−−−→















(. . . , is + 1, . . . , it, . . .) 0 ≤ is ≤ ks, it ≤ kt
(. . . , is + 1, . . . , it − 1, . . .) 0 ≤ is ≤ ks, it = kt + 1
(. . . , is, . . . , it, . . .) is = ks + 1, it ≤ kt
(. . . , is, . . . , it − 1, . . .) is = ks + 1, it = kt + 1

(. . . , is, . . . , it, . . .) qs
−−−−−→



























(. . . , is, . . . , it, . . .) is = 0, xj ≤ kt
(. . . , is, . . . , it − 1, . . .) is = 0, xj = kt + 1
(. . . , is − 1, . . . , it, . . .) 1 ≤ is ≤ ks, it ≤ kt
(. . . , is − 1, . . . , it − 1, . . .) 1 ≤ is ≤ ks, it = kt + 1
(. . . , is − 2, . . . , it, . . .) is = ks + 1, it ≤ kt
(. . . , is − 2, . . . , it − 1, . . .) is = ks + 1, it = kt + 1

(. . . , is, . . . , it, . . .) r
−−−−−→















(. . . , is, . . . , it, . . .) 0 ≤ is ≤ ks, it ≤ kt
(. . . , is, . . . , it − 1, . . .) 0 ≤ is ≤ ks, it = kt + 1
(. . . , is − 1, . . . , it, . . .) is = ks + 1, it ≤ kt
(. . . , is − 1, . . . , it − 1, . . .) is = ks + 1, it = kt + 1

1 ≤ s ≤ n, 1 ≤ t ≤ n, s 6= t
Construct the balance equation αi =

∑
i
αjPji. For our system it will

be the following (for internal states):

54 Prof. A.V. Sokolov, A.V. Drac

Figure 1: Transition between states in the case of consecutive presentation

1. αi1i2...in = p1αi1−1,i2...in + q1αi1+1,i2...in + · · ·+ pnαi1i2...in−1 +
qnαi1i2...in+1 + rαi1i2...in

(1 ≤ ij ≤ kj − 2, 1 ≤ j ≤ n)

2. α0i2...in = q1α1,i2...in + · · ·+ pnα0i2...in−1 + qnα0i2...in+1 +
(r + q1)α0i2...in

(i1 = 0, 1 ≤ ij ≤ kj − 2, 2 ≤ j ≤ n)

3. αk1−1i2...in = p1αk1−2,i2...in + q1αk1,i2...in + q1αk1+1,i2...in + · · ·+
pnαi1i2...in−1 + qnαi1i2...in+1 + rαk1−1,i2...in

(i1 = k1 − 1, 1 ≤ ij ≤ kj − 2, 2 ≤ j ≤ n)

4. αk1i2...in = p1αk1−1,i2...in + rαk1+1,i2...in + · · · + pnαi1i2...in−1 +
qnαi1i2...in+1 + rαk1i2...in

(i1 = k1, 1 ≤ ij ≤ kj − 2, 2 ≤ j ≤ n)

5. αk1+1i2...in = p1αk1,i2...in + p1αk1+1,i2...in

(i1 = k1, 1 ≤ ij ≤ kj − 2, 2 ≤ j ≤ n)

Split the set of indexes I = {1, . . . , n} into the subsets:
I1 = {j : ij = 0}

The optimal implementation of n FIFO-queues in single-level memory 55

I2 = {j : 1 ≤ ij ≤ kj − 2}
I3 = {j : ij = kj − 1}
I4 = {j : ij = kj}
I5 = {j : ij = kj + 1}

Since only one of queues can be into the state of ”reset tail” then |I5| = 0
or |I5| = 1.

1. For usual states (equations 1–4 in common view, i.e. when I5 = ∅):
αi1...in = (r +

∑

j∈I1

qj)αi1...in +
∑

j∈I1

qjαi1...ij+1...in +
∑

j∈I2+I3

(pjαi1...ij−1...in + qjαi1...ij+1...in) +
∑

j∈I3

qjαi1...ij+2...in +

∑

j∈I4

(

rαi1...ij+1...in + pjαi1...ij−1...in +
∑

l∈I2+I3

(plαi1...il−1...ij+1...in + qlαi1...il+1...ij+1...in) +

∑

l∈I1

ql(αi1...il...ij+1...in + αi1...il+1...ij+1...in)

)

2. For the states of ”reset tail” (equation 5):
αi1...kj+1...in = pj(αi1...kj ...in + αi1...kj+1...in)

The system has the following solution:

αi1...in = C

(
p1
q1

)i1

. . .

(
pn
qn

)in


1−

∑

j∈I4

pj


 I5 = ∅

αi1...ij ...in = C

(
p1
q1

)i1

. . .

(
pj
qj

)ij−1

. . .

(
pn
qn

)in

pj I5 = {j}

Denote pi/qi = xi, i = 1, . . . , n. Let for queues with numbers 1, . . . , s
xi 6= 1, i.e. pi 6= qi, and for queues with number s + 1, . . . , n xi = 1, i.e.
pi = qi. Find the constant C from the normalizatin equation:

1
C =

k1∑
i1=0
· · ·

kn∑
in=0

xi11 . . . xknn =
k1∑

i1=0
xi11 · · ·

kn∑
in=0

xknn =

=
s∏

i=1

xki+1
i − 1

xi − 1

n∏
i=s+1

(ki + 1)

Summarise all αi1...in which the states of ”reset tail”. For queue with
number 1 it will be the states with the condition i1 = k1, 0 ≤ ij ≤ in,

56 Prof. A.V. Sokolov, A.V. Drac

2 ≤ j ≤ n.

p∗1 = p1x
k1

1

1

C

k2
∑

i2=0

· · ·
kn
∑

in=0

x
i2
2 . . . xkn

n = p1x
k1

1

1

C

k2
∑

i2=0

x
i2
2 · · ·

kn
∑

in=0

xkn
n =

p1x
k1

1

1

C

s
∏

i=1

x
ki+1

i − 1

xi − 1

n
∏

i=s+1

(ki + 1) = p1x
k1

1

x1 − 1

x
k1+1

1 − 1
=

p1

(

p1

q1

)k1
(

p1

q1
− 1

)

(

p1

q1

)k1+1

− 1

=
p1(p

k1+1

1 − p
k1

1 q)

p
k1+1

1 − q
k1+1

1

=
p1 − q1

1−

(

q1

p1

)k1+1
=

q1 − p1
(

q1

p1

)k1+1

− 1

Similarly for the queues with numbers 2, . . . , s.
For the queue with number s+ 1:

p∗s+1 =
ps+1

ks+1 + 1

Similarly for the queues with numbers s+ 2, . . . , n.
Then the summary part of time which the system is situated in the

state of ”reset tail” is equal to:

P ∗
c =

n∑

i=1

p∗i =

s∑

i=1

qi − pi(
qi
pi

)ki+1

− 1

+

n∑

i=s+1

pi
ki + 1

The problem of optimal division of memory was solved in [1].

4 Linked list presentation of queues

As the mathematical model we consider the random walk on an integer
lattice space inside n-dimensional pyramid with edges 0 ≤ x1 ≤ M , 0 ≤
x2 ≤M , . . . , 0 ≤ xn ≤M and base x1 + x2 + · · ·+ xn = M .

For each state in the face x1 + x2 + · · · + xn = M , i.e. when all the
memory is exausted, define the corresponding state of ”reset tail”. Denote
it as (x̄1, . . . , x̄n). It can be reached in case of inserting of an element into
any of queues. Conversion of the system from state (x1, . . . , xn) to state
(x′1, . . . , x

′
n) occurs in according to the following rules (fig. 2):

(. . . , is, . . . , it, . . .) ps
−−−−−→

{

(. . . , is + 1, . . . , it, . . .) 0 ≤ i1 + · · ·+ in < M
(. . . , x̄s, . . . , x̄j , . . .) i1 + · · ·+ in = M

(. . . , is, . . . , it, . . .) qs
−−−−−→

{

(. . . , is − 1, . . . , it, . . .) is > 0
(. . . , is, . . . , it, . . .) is = 0

(. . . , is, . . . , it, . . .) r
−−−−−→ (. . . , is, . . . , it, . . .)

The optimal implementation of n FIFO-queues in single-level memory 57

Figure 2: Transition between states in the case of linked list presentation

(. . . , īs, . . . , īt, . . .) ps
−−−−−→ (. . . , īs, . . . , īt, . . .)

(. . . , īs, . . . , īt, . . .) qt
−−−−−→

{

(. . . , is − 1, . . . , it, . . .) is > 0
(. . . , is, . . . , it, . . .) is = 0

(. . . , īs, . . . , īt, . . .) r
−−−−−→ (. . . , is, . . . , it, . . .)

Split the set of indexes I = {1, . . . , n} into the subsets:

I1 = {j : ij = 0}
I2 = {j : ij > 0}

Construct the balance equation αi =
∑
i
αjPji. For our system it will

be the following:

1. αi1...in =
∑
j∈I1

(qjαi1...ij ...in + qjαi1...ij+1...in) +
∑
j∈I2

(pjαi1...ij−1+in +

qjαi1,...ij+1...in) + rαi1...in

(0 ≤ i1 + · · ·+ in ≤M − 2)

58 Prof. A.V. Sokolov, A.V. Drac

2. αi1...in =
∑
j∈I1

(qjαi1,...ij+in + qj(αi1,...ij+1...in + αi1...ij ...in)) +
∑
j∈I2

(pjαi1...ij−1+in + qj(αi1,...ij+1...in + αi1...ij ...in)) + rαi1...in

(i1 + · · ·+ in = M − 1)

3. αi1...in = p1αi1−1,i2...in + · · ·+ pnαi1i2...in−1 + r(αi1i2...in + αi1,i2...in)
(i1 + · · ·+ in = M)

4. αi1...in = (p1 + · · ·+ pn)(αi1i2...in + αi1i2...in)
(i1 + · · ·+ in = M)

The system has the following solution:

αi1i2...in = C

(
p1
q1

)i1

. . .

(
pn
qn

)in

0 ≤ i1 + · · ·+ in ≤M − 1

αi1i2...in = C(1− p1 − · · · − pn)

(
p1
q1

)i1

. . .

(
pn
qn

)in

i1 + · · ·+ in = M

αi1i2...in = C(p1 + · · ·+ pn)

(
p1
q1

)i1

. . .

(
pn
qn

)in

i1 + · · ·+ in = M

Find the constant C from the normalizatin equation:

1

C
=

M∑

in=0

M−in∑

in−1=0

· · ·
M−i2−···−in∑

i1=0

xi11 . . . xinn

Find the summary part of time which system situated in the state of
”reset tail”.

4.1 Statement

Let a1, . . . , ak are the distinct numbers, 0 ≤ s ≤ k − 1, then:
as
1

(a1 − a2)(a1 − a3) . . . (a1 − ak)
+

as
2

(a2 − a1)(a2 − a3) . . . (a2 − ak)
+ · · ·+

+
as
k

(ak − a1)(ak − a2) . . . (ak − ak−1)
= 0

Proof:

Lead the left part to the common denominator. p-th summand will have
p−1 changes of sign. All brackets without ap will be into the p-th summand
ap

1∏
1≤i<j≤k

(ai − aj)

(
as1

∏
2≤i<j≤k

(ai−aj)+· · ·+(−1)p+1asp
∏

1≤i<j≤k
i 6=p 6=j

(ai−aj)+

· · ·+
+ ask

∏
1≤i<j≤k−1

(ai − aj)

)
=

The optimal implementation of n FIFO-queues in single-level memory 59

Represent the sum in brackets in the form of a determinant. In every
summand the procuct will be the value of Vandermond’s determinant (p−
1)-th order.

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

as
1 as

2 as
3 . . . as

k

1 1 1 . . . 1
a1 a2 a3 . . . ak

a2
1 a2

2 a2
3 . . . a2

k

...
...

...
. . .

...

ak−1

1 ak−1

2 ak−1

3 . . . ak−1

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Determinant is equal to 0, because it has 2 equal rows

4.2 Case of different values of probabilities

Consider the case when xi 6= 1 ∀i and xi 6= xj when i 6= j:

1

C
=

xM+n
1

(x1 − 1)(x1 − x2) . . . (x1 − xn)
+ · · · +

xM+n
n

(xn − 1)(xn − x1) . . . (xn − xn−1)
+

1

(1− x1) . . . (1− xn)
= fn(X,M)

Method of mathematical induction:

1) Base n = 2:

M∑
i2=0

M−i2∑
i1=0

xi11 x
i2
2 =

M∑
i2=0

xi22
M−i2∑
i1=0

xi22 =
M∑

i2=0
xi22

xM−i2+1
1 − 1

x1 − 1
=

=
M∑

i2=0

xM−i2+1
1 xi22
x1 − 1

−
M∑

i2=0

xi22
x1 − 1

=
x1

x1 − 1

xM+1
2 − xM+1

1

x2 − x1
− xM+1

2 − 1

(x1 − 1)(x2 − 1)
=

=
xM+2
1

(x1 − 1)(x1 − x2)
+

1

(1− x1)(1− x2)
− x2

(
x1

(x1 − 1)(x1 − x2)
+

1

(1− x1)(1− x2)

)
=

xM+2
1

(x1 − 1)(x1 − x2)
+

xM+2
2

(x2 − 1)(x2 − x1)
+

1

(1− x1)(1− x2)

2) Suppose it is true for (n− 1)-th queue.
3) Proof for n:

fn(X,M) =
M∑

in=0
xinn

M−in∑
in−1=0

· · ·
M−i2−···−in∑

i1=0
xi11 . . . x

in−1

n−1 =

n∑
j=0

xjn(fn−1(M))n−j

Simplify summands:
M∑
j=0

xjn =
xM+1
n − 1

xn − 1
M∑
j=0

xjnx
M−j+n−1
i =

xn−1
i (xM+1

n)− xM+1
i

xn − xi
=

xM+n
i

xi − xn
− xM+1

n xn−1
i

xi − xn

60 Prof. A.V. Sokolov, A.V. Drac

(1 ≤ i ≤ n− 1)
Then:

fn(X,M) =
xM+n
1

(x1 − 1)(x1 − x2) . . . (x1 − xn)
+ · · ·+

xM+n
n−1

(xn−1 − 1)(xn−1 − x1) . . . (xn−1 − xn)
+

1

(1− x1) . . . (1− xn)
− xM+1

n

(

xn−1

1

(x1 − 1)(x1 − x2) . . . (x1 − xn)
+ · · ·+

xn−1

n−1

(xn−1 − 1)(xn−1 − x1) . . . (xn−1 − xn)
+

1

(1− x1) . . . (1− xn)

)

=

=
xM+n
1

(x1 − 1)(x1 − x2) . . . (x1 − xn)
+ · · ·+

xM+n
n

(xn − 1)(xn − x1) . . . (xn − xn−1)
+

1

(1− x1) . . . (1− xn)

Then C =
1

fn(X,M)
. Summarise αi1...in , which corresponds to the

states of ”reset tail” :

(p1 + · · · + pn)
M∑

in=0

M−in∑
in−1=0

· · ·
M−i3−···−in∑

i2=0
xM−i2−···−in
1 xi22 . . . xinn =

gn(X,M)
Proof that

gn(X,M) = (p1 + · · · + pn)
xM+n−1
1

(x1 − x2) . . . (x1 − xn)
+ · · · +

xM+n−1
n

(xn − x1) . . . (xn − xn−1)
Method of mathematical induction:

1) Base n = 2:

(p1 + p2)
M∑
i=0

xi1x
M−i
2 = (p1 + p2)

xM+1
1 − xM+1

2

x1 − x2
= (p1 +

p2)

(
xM+1
1

x1 − x2
+

xM+1
2

x2 − x1

)

Steps 2) and 3) are the same as in calculating constant C

P ∗ = (p1 + · · ·+ pn)
gn(X,M)

fn(X,M)

4.3 Common case

Suppose that there are k0 queues that have the probabilities:
pi
qi

= x0 = 1,

k1 queues, that:
pi1
qi1

= · · · =
pik1
qik1

= x1
. . .
ks queues, that:

pj1
qj1

= · · · = pjks
qjks

= xs

k0 + k1 + · · ·+ ks = n
Find the constant C:

The optimal implementation of n FIFO-queues in single-level memory 61

1

C
=

M
∑

is=0

M−is
∑

is−1=0

· · ·
M−i2−···−is

∑

i1=0

M−i1−···−is
∑

i0=0
(

ks+is−1

ks

)

xis
s

(

ks−1+is−1−1

ks−1

)

x
is−1

s−1 . . .
(

k1+i1−1

k1

)

x
i1
1

(

k0+i0
k0

)

=

= f∗

s (X,M)

Proof that

f∗(X,M) =
∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1xs

{

1

k0!(k1 − 1)! . . . (ks − 1)!
(

xM+n
0

(x0 − x1) . . . (x0 − xs)
+ · · ·+

xM+n
s

(xs − x0) . . . (xs − xs−1)

)}

Method of mathematical induction:

1) Base s = 1:
M
∑

j=0

(

k1+j−1

j

)

x
j
1

(

M+k0−j

M−j

)

=
M
∑

j=0

(k1 + j − 1)!

j!(k1 − 1)!
x
j
1

(M + k0 − j)!

(M − j)!k0!
x
M−j
0 =

=
1

k0!(k1 − 1)!

M
∑

j=0

(M − j + 1) . . . (M − j + k0)x
M−j
0 (j + 1) . . . (j + k1 − 1)xj

1 =

=
∂k0+k1−1

∂k0x0∂k1−1x1

{

1

k0!(k1 − 1)!

M
∑

j=0

x
M−j+k0

0 x
j+k1−1

1

}

=

=
∂k0+k1−1

∂k0x0∂k1−1x1

{

1

k0!(k1 − 1)!

M+k0
∑

j=−k1+1

x
M−j+k0

0 x
j+k1−1

1

}

=

=
∂k0+k1−1

∂k0x0∂k1−1x1

{

1

k0!(k1 − 1)!

x
M+k0+k1

0 − x
M+k0+k1

1

x0 − x1

}

=

=
∂n−s

∂k0x0∂k1−1x1

{

1

k0!(k1 − 1)!

(

xM+n
0

x0 − x1

+
xM+n
1

x1 − x0

)}

2) It is true for 0, . . . , s− 1
3) Proof for s:

f∗
s (X,M) =

M∑
is=0

(
ks+is−1

ks

)
xiss

M−is∑
is−1=0

· · ·
M−i2−···−is∑

i1=0

M−i1−···−is∑
i0=0(ks−1+is−1−1

ks−1

)
x
is−1

s−1 . . .
(
k1+i1−1

k1

)
xi11
(
k0+i0
k0

)
=

=
M∑
j=0

(
ks+is−1

ks

)
xiss f

∗
s−1(X,M − j)

Simplify the summand:
M
∑

j=0

(

ks+j−1

ks

)

xj
sx

M−j+k0+···+ks−1

i =
1

ks!

M
∑

j=0

(ks + 1) . . . (ks + is −

1)xj
sx

M−j+k0+···+ks−1

i =

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

M
∑

j=0

xj+ks−1
s x

M−j+k0+···+ks−1

i

}

=

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

M
∑

j=−ks+1

xj+ks−1
s x

M−j+k0+···+ks−1

i

}

=

62 Prof. A.V. Sokolov, A.V. Drac

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

(

M+k1+···+ks−1
∑

j=−ks+1

xj+ks−1
s x

M−j+k0+···+ks−1

i −

M+k0+···+ks−1
∑

j=M+1

xj+ks−1
s x

M−j+k0+···+ks−1

i

)}

=

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

(

xM+k0+···+ks
s − x

M+k0+···+ks

i

xs − xi

− (x
k0+···+ks−1−1

i xM+ks
s + · · · +

xM+n−1
s)

)}

=

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

(

−
xM+n
s

xi − xs

+
xM+n
i

xi − xs

− (x
k0+···+ks−1−1

i xM+ks
s + · · · +

xM+n−1
s)

)}

(∗)

(1 ≤ i ≤ s− 1)
Summarise the last expression for i from 1 to s− 1 and simplify it:
From the Lemma:
0 ≤ p ≤ s− 1:

xp0
(x0 − x1) . . . (x0 − xs−1)

+
xp1

(x1 − x0) . . . (x1 − xs−1)
+ · · ·+

+
xps−1

(xs−1 − x0) . . . (xs−1 − xs−2)
= 0

Apply the formula from the consecutive representation in reverse order:
s ≤ p ≤ k0 + · · ·+ ks−1 − 1:

x
p
0

(x0 − x1) . . . (x0 − xs−1)
+

x
p
1

(x1 − x0) . . . (x1 − xs−1)
+ · · · +

x
p
s−1

(xs−1 − x0) . . . (xs−1 − xs−2)
=

=
p−s+1
∑

i0=0

p−s+1−i0
∑

i1=0

· · ·
p−s+1−i0−···−is−2

∑

is−1=0

x
i0
0 x

i1
1 . . . x

is−1

s−1

∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1−1xs−1
{

p−s+1
∑

i0=0

p−s+1−i0
∑

i1=0

· · ·
p−s+1−i0−···−is−2

∑

is−1=0

x
i0
0 x

i1
1 . . . x

is−1

s−1

}

= 0

As all the summands have the total power not more than
p− s+ 1 ≤ k0 + · · ·+ ks−1 − 1− s+ 1 = k0 + · · ·+ ks−1 − s,
and the order of the partial derivative is
k0 + (k1 − 1) + · · ·+ (ks−1 − 1) = k0 + · · ·+ ks − s+ 1,
i.e. at least one less the total power of each summand.
Hence, while summaring in (*) the derivative of sum the following
summands will be equal to 0

∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1−1xs−1{
s−1∑
i=0

x
k0+···+ks−1−1
i xM+ks

s + · · ·+ xM+n−1
s

(xi − x0) . . . (xi − xs−1)
= 0

}
1 ≤ i ≤ s− 1

The optimal implementation of n FIFO-queues in single-level memory 63

From the Lemma:
1

(x0 − x1) . . . (x0 − xs−1)(x0 − xs)
+ · · · +

1

(xs−1 − x0) . . . (xs−1 − xs−2)(xs−1 − xs)
=

1

(xs − x0) . . . (xs − xs−1)
Finally obtain:
1

C
= f∗

s (X,M) =
∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1xs

{
1

k0!(k1 − 1)! . . . (ks − 1)!(
xM+n
0

(x0 − x1) . . . (x0 − xs)
+ · · ·+ xM+n

s

(xs − x0) . . . (xs − xs−1)

)}

5 Comparison between consecutive and linked list

presentations

In previous sections we obtain the formulas which express the average
part of time which the system is situated in the state of ”reset tail”. In
this section we will compare consecutive and linked list presentations.
Our results were obtained when m → ∞, but they are correct in prelimit
form when the size of memory is rather small about 10-20 units. To check
results we used system of vector algebra maxima.
We will distinguish several cases of dependences between probabilities:

1. p1 > q1 and
p1
q1

>
pi
qi

for i = 2, . . . , n.

Consecutive implementation:

lim
m→∞

qi − pi(
qi
pi

)ki+1

− 1

=

{
pi − qi, pi > qi

0, pi < qi

lim
m→∞

pi
ki + 1

= 0

Hence, P ∗
N →

n∑
i=1

max(pi − qi, 0)

Linked list implementation:

P ∗
l = (p1 + · · ·+ pn)

n∑
i=1

xM+n−1
i

n∏
j=1
j 6=i

(xi − xj)

n∑
i=1

xM+n
i

(xi − 1)
n∏

j=1
j 6=i

(xi − xj)

+
1

n∏
j=1

(1− xj)

→

(p1 + · · ·+ pn)

(
xi − 1

xi

)
= (p1 + · · ·+ pn)

(
1− q1

p1

)

64 Prof. A.V. Sokolov, A.V. Drac

pi(1−
q1
p1

) > 0 2 ≤ i ≤ n, because p1 > q1

pi(1−
q1
p1

) = pi − pi
q1
p1

> pi − qi

Hence, pi(1−
q1
p1

) > max(pi − qi, 0)

Summarise the last inequality for i from 2 to n and add pi − qi:

lim
m→∞

P ∗
c =

n∑
i=1

max(pi − qi, 0) < (p1 + · · ·+ pn)

(
1− q1

p1

)
= lim

m→∞
P ∗
l

P ∗
c < P ∗

l even when the size of memory is rather small.

2. pi = qi =
1

2n
for i = 1, . . . , n.

P ∗
c =

n∑
i=1

pi
ki + 1

=
n∑

i=1

1
2n

m
n + 1

=
n

m+ n
P ∗
c ≤

n

m+ n

P ∗
l =

n

M + n
P ∗
c < P ∗

l

3. pi < qi for i = 1, . . . , n. and
p1
q1

>
pi
qi

In [1] we found the optimal partition of memory in the case of consecutive
presentation using the method of dynamic programming. All the queues
will spend roughly the same part of time in the state of ”reset tail”. I.e.

qi − pi(
qi
pi

)ki+1

− 1

≈ qj − pj(
qj
pj

)kj+1

− 1

∀i 6= j

Using this equations and condition k1 + · · · + kn we can find the roughly
values of variables k1, . . . , kn:

P ∗
c ≈

1

exp

(
m− n

n∑
i=1

1

log(qipi)

− log n

) = O

(
exp

(
− m

n∑
i=1

1

log(qipi)

))

The behaviour of the function P ∗
l (M) will be determined by the value

n∑
i=1

xM+n−1
i

n∏
j=1
j 6=i

(xi − xj)

because in the denominator
n∑

i=1

xM+n
i

(xi − 1)
n∏

j=1
j 6=i

(xi − xj)

→ 0

The optimal implementation of n FIFO-queues in single-level memory 65

and value
1

n∏
j=1

(1− xj)

is a constant. Thus

P ∗
l = O

((
q1
p1

)M)
= O

(
exp
(
−m(1− 1

l
) log

q1
p1

))

In this case the part of time which the system is situated in the state
of ”reset tail” exponentially tends to 0 in both cases of presentation. To
choose best of them we need to compare the exponents and choose minimal
of them.

Bibliography

[1] E. A. Aksenova, A. V. Drac, A. V. Sokolov. The optimel control of n
FIFO-queues for infinit time. Information and Conrot Systems. p. 46-
54. 2009. In russian.

[2] D. E. Knuth. The art of computer programming. Vol. Addison-Wesley,
Reading, MA, 2001.

[3] M. Tolley, G. Louchard, R. Schott. Random walks, heat equation and
distributed algorithms. J. Comput. Appl. Math. p. 243-274. 1994.

[4] J. Riordan. Introduction to Combinatorial Analysis. Dover Publica-
tions, 1958.

[5] J. L. Snell, J. G. Kemeny. Finite Markov Chains. Van Nostrand,
Princeton, New Jersey, 1960.

