
AMICT’2010-2011. pp. 39–49 39

Introduction to store data in Redis, a

persistent and fast key-value database

Matti Paksula

Department of Computer Science, University of Helsinki

P.O.Box 68, FI-00014 University of Helsinki, Finland

E-mail: {paksula@cs.helsinki.fi}

Abstract

This article gives short introduction to key-value storage called Redis. In
addition a pattern to persist simple objects is provided. The pattern
focuses on the consistency of objects under race and failure conditions.
Proposed pattern is useful for cloud storage implementations that require
speed and scalability. This approach can optionally be implemented with
schemaless data model. Implementation can be done with any language,
although the examples are presented with Ruby.

1 Introduction

Recent beginning of ”NoSQL movement” has brought a lot of attention to
key-value databases or stores (from now on KVS ). Cloud web applications
require fast requests and the use of a relational database (from now on
RDBMS ) can sometimes be major bottleneck in the architecture [10]. This
does not however imply that RDBMSes should be avoided. The problem
is that they are being used as a generic building block for every problem.
Simplified KVS brings speed, but also provides very little. This leads to
major shift of responsibility from data persistence layer to developers.

NoSQL is easily understood as anti-SQL, but it should be understood as
”Not Only SQL”. KVS are not suitable for replacing relational databases,
but to provide better approach in meeting non-functional requirements es-
pecially in cloud architectures. These databases or stores can not provide
ACID style transactions. However, object persistence needs to be consis-
tent nevertheless. This can be achieved with good design patterns that are
implemented both in the architectural and component level. In this paper
an example pattern for storing objects in KVS is given and at some level
compared to RDBMS persistence.

c© Matti Paksula, 2010



40 Matti Paksula

The rest of this paper is organized as follows: First some background on
cloud application architectures and key concepts of KVS are given. Some
comparison of KVS against RDBMS is also done. Then introduction for
object persistence in KVS is given. After these main principles of object
persistence, different KVS implementations are shortly compared and then
the key concepts of Redis KVS are explained. A Redis specific implemen-
tation of object persistence is illustrated with pseudocode like examples.

2 Architectural motivation

Web application needs to serve requests as quickly as possible. Most of
the requests consist mainly of reads from the database. Brewers CAP
theorem says that in distributed environment, like cloud, we have three
requirements: Consistency, Availability and Partition Tolerance, but we
can only have two out of these three. What this means is that system
operations on data need to be consistent, it has to be available for the user
and data has to be stored in multiple locations. In order to satisfy all three,
we can select two and solve the third requirement by a workaround [1, 2].

Instead of writing our application to satisfy ACID requirements
(Atomicity, Consistency, Durability and Isolation) we write our architec-
ture using BASE approach ((Basically Available, Soft-state and Eventually
consistent) [3]. This means that we do our best to keep data available, but
for example if some network link goes down, we still serve that data we have
access to. Modifications to the data are guaranteed to perform eventually
for example by deferring write operations to a job queue. Due the nature
of web applications where requests are independent and have some time
between them, this approach can be very successfull.

Dropping ACID on architectural level gives us also the opportunity to
drop it in the database level also. This is where the KVS option becomes
interesting. Usually most of the operations are reads and scaling web ap-
plication means scaling up the reads.

3 KVS vs RDBMS

RDBMS has to satisfy ACID requirements when modifying the data. This
makes partitioning data accross different physical locations hard as data
needs to be written in all the locations before OK can be returned. Also
the write operations tend to be as hard disk IO becomes the bottleneck.
RDBMS also have fixed schema and this can for example lead to bloated
table designs with lot of unused columns.



Introd. to store data in Redis, a persistent and fast key-value database.41

KVS are really simple by design. A value can be saved with a unique
key. That value can later be loaded by that same key. This is more gener-
ally known as hash addressing described already in 1968 by R.Morris [6].
KVS do not natively support relations or full text queries, but can be a
better match to some situations. Examples of such situations are storing
operational data, metadata, logging, message queues, caching and serving
pre-computed data. One approach to implement a KVS is to store keys
in-memory and persist the dataset to file asynchronously. When the KVS
server is restarted, all the data is loaded into memory from that file.

RDBMS have serious advantages over KVS: they are well tested, have
good management tools and programming patterns available. Key-values
on the other hand are fairly new, each of them have different approach and
excel only in a very narrow segment [10].

Sometimes the difference between RDBMS and a KVS is almost non-
existing. For example when using MySQL by indexed primary keys it
can perform really well and depending on the needs can also be easier to
partition than current KVS implementations. Also some operations, like
sorting can be faster to do at the application level when data is suitable for
that. There is no single technology to implement a scalable system. Such
system has to be crafted with a combination of different technologies and
architectural designs.

Developers existing familarity with RDBMS and the fact that as ma-
tured systems they are easier to understand, might be good enough reason
for not to consider KVS option. On the other hand scalability requirements
might force to consider it.

4 Persisting objects in KVS

Objects are traditionally peristed in RDBMS with Object-Relational map-
per (ORM). While KVS implementations differ, there are some common
requirements for persistence.

4.1 Objects

Objects are instances of classes implemented in host language. As structure
for object and methods etc. is in the code, the entity itself is defined by its
unique identifier and attribute values. Simple attribute types like strings,
integers, booleans and floats are suitable for storing in KVS.

A collection of objects can be defined as a collection of unique identi-
fiers. From these identifiers we can get all the attributes from the database
required to create these objects.



42 Matti Paksula

An objects attribute can be stored with following key-value pair Class-
Name:Identifier:AttributeName ⇒ Value.

Example 1. A car with two attributes as separate keys
Car:34:color ⇒ green
Car:34:speed ⇒ 120

This approach can be problematic as descibed in the next section.

4.2 Consistency of objects

Concurrency of reads and writes makes previous approach problematic as
KVS does not provide same kind of transactions that we are used to in the
RDBMS world. If this is not considered, it can lead to potential inconsis-
tencies. For example during attribute read operation, a concurrent update
operation can be modifying the same object. When object is returned to
application, it can have some old and some new values. Also, when deleting
an object it is possible that execution is terminated for example by power
failure and only some of the attributes were deleted.

4.3 Schemaless data model

It is common that not all of the instances have exactly the same attributes
than others. Some might have attributes that exist only in the minority of
all objects. Schemaless data model is useful during the development phase,
but also interesting for the production. For example, an administrator could
add attributes on the fly for certain instances and the application could be
designed to show only those attributes that are present in the instance.
Schemaless approach does not necesary equal chaos if the architecture is
designed to support it. Simple example of this is provided in the evaluation
chapter.

5 Key-value storages

There are different implementions of KVS and most of them have not yet
fully matured. Cloud services have defined a new set of problems what
pioneers like Facebook and Amazon are addressing these problems with
their own distributed implementations like Cassandra [4] and Dynamo [5].
These distributed large scale KVS have proven to work well for them, but
for smaller scale (not massively big) web application they might be too
heavy. Things we get for granted with RDBMS like indexing data, provid-
ing query language and views are currently under research [7, 10, 11].



Introd. to store data in Redis, a persistent and fast key-value database.43

Smaller scale KVS implementations include for example CouchDB,
MongoDB and Redis. They differ from each other and are suitable for dif-
ferent kind of tasks. For example MongoDB provides a relational database
like query language and is essentially a document database. All of these
three support partitioning and replication of the data at some level. Mostly
experimental object persistence adapters are available for all implementa-
tions.

6 Redis introduction

Redis does not support complex queries or indexing, but has support for
data structures as values. Being very simple it is also fastest KVS im-
plementations for many basic operations. Speed and data structures are
interesting combination that can be used for simple object persistence.

Data structures in Redis are more generally called Redis Datatypes.
These include strings, lists, sets, sorted sets and hashes. Redis provides
commands that can be used to modify these types. For example list sup-
ports normal list operations, like push and pop.

The whole dataset is kept in-memory and therefore can not exceed
the amount of physical RAM. Redis server writes entire dataset to disk at
configurable intervals. This can also be configured so that each modification
is always written on the disk before returning OK. Master-Slave replication
is also available and clustering is currently under development [9].

Atomic commands and Redis Transactions

Every Redis command is executed atomically. For example the INCR com-
mand increments integer value of key atomically. Two separate commands
are not atomical without combining them with Redis Transactions.

Transactions in Redis are actually queued commands that are executed
atomically in sequence. If one command raises an error, all the other com-
mands in the queue are still processed. Redis starts queuing commands
after command MULTI and executes those in one atomic transaction with
EXEC.

6.1 Sorted sets and Hashes

Sorted sets are similar to RDBMS indexes. Sorted sets contain members
that are sorted by a special integer value score. For example ”ZADD Foo:all
10 10” stores value 10 to key Foo:all with score of 10.



44 Matti Paksula

Hashes are key-value pairs inside a key and suitable for storing objects
attributes. For example ”HMSET Cat:2:attributes color black age 20” adds
two key-value pairs to the key Cat:2:attributes.

7 Implementation

In following implementation each persisted object has its own unique integer
identifier. Based on this identifier a key Foo:id:attributes containing the
objects attributes is created (assuming that object is named Foo). This
key stores the attributes as Redis hash. When the object is created, a
special sorted set Foo:all is updated to contain the identifier. With this
”master” set it is possible to know if object is persisted or not.

Because write operations are different atomic operations, concurrency
of writes can lead to inconsistent objects. If a delete operation is stopped
(for e.g. power outage) in the between of attribute deletion and removal
from the master set, object loses it’s attributes. Also some garbage keys
can exist in the memory if the object is removed from the master set of
Foo:all and attributes are not deleted left. To prevent these scenarior each
operation has to be designed for race conditions and process termination.

Redis specific implementation details are given in next pseudocode like
algorithms. Redis commands are written in capital letters. Only the ba-
sic operations are described as further work is needed to provide simple
relations and indexes. In the examples class named Cat is used over Foo,
because cats have names and lengths unlike foos.

7.1 Create

Create operation is shown in algorithm 1. Operation fetches new identifier
from shared sequence. Then all attributes are set in Redis hash. After this
object is added to set of all persisted objects. This is done with ZADD
command, that adds objects identifier integer with the same integer as
score in the sorted set. Command HMSET accepts many key-value pairs
(HMSET key field1 value2 ... fieldN valueN). Each attribute can also
be written separately, this approach is shown in alternative create algorithm
2.

Increasing identifier and storing attributes are done in sperate atomic
operations. This could lead to situation where identifier is increased, but
no object is persisted. This is acceptable for worst case scenario as the
dataset is still consistent. Atomic transaction guarantees that attributes
do not get written without being added to sorted set all.



Introd. to store data in Redis, a persistent and fast key-value database.45

Algorithm 1 Create an object

Require: attrs
id← INCR ”Cat:sequence”

MULTI

{HMSET ”Cat:3:attributes” ”name” ”lolcat” ”age” ”3”} HMSET

”Cat:id:attributes” attrs
ZADD ”Cat:all” id id

EXEC

Algorithm 2 Alternative object creation

Require: attrs
id← INCR ”Cat:sequence”

MULTI

for all key, value in attrs do

HSET ”Cat:id:attributes” key value
end for

ZADD ”Cat:all” id id

EXEC



46 Matti Paksula

7.2 Load

It is possible to get all the attributes after the object is persisted by using
unique object identifier. Returning value of ZSCORE operation against
this key is the score of the key in sorted set. If key was not found then
a special value NIL is returned. Attribute read returns an empty set also
when an object does not have any attributes. Therefore reading score and
attributes atomically is required to determine if object was stored without
any attributes. Also a race condition with delete operation is possible when
operations are not atomic.

Algorithm 3 Load an object

Require: id
MULTI

id← ZSCORE ”Cat:all” id
attrs← HGETALL ”Cat:id:attributes”

EXEC

if id is zero then

return false

else

return attrs
end if

7.3 Update

Updating an existing object is equal to the creation as shown in algo-
rithm 1. Alternative creation algorithm (algorithm 2) can provide better
performance when only some of the keys are updated. In the worst case
performance is the same as in create.

Update can also be used when adding and removing attributes to and
from an existing object. This requires a host language that supports adding
new attributes dynamically in objects or some other method.

7.4 Delete

Delete (in algorithm 4) is done by combining deletion of attributes and
removal from sorted set all into one atomic transaction.



Introd. to store data in Redis, a persistent and fast key-value database.47

Algorithm 4 Delete an object

Require: id
MULTI

DEL ”Cat:id:attributes”
ZREM ”Cat:all” id
EXEC

7.5 Count

Counting (in algorithm 5) the number of persisted objects is the cardinality
of sorted set all. Time complexity is O(1).

Algorithm 5 Count objects

i← ZCARD ”Cat:all”
return i

8 Conclusion

Using novel database techniques is still pretty experimental. A quote from
the Redis mailing list summarises it all:

”However, I have to admit, I’ve definitely had sleepless nights.
Redis is a new technology. We explored new territory and had
little experience (internal or otherwise) to rely upon. We’ve
had to debug and patch the driver, write our own query layer,
backups, data injection scripts, all sorts of stuff you take for
granted from the SQL world, and we’re still tweaking it, and
wishing for pre-made solutions.” [8]

Key-value databases have not yet fully matured, but do give interesting
options for developing distributed and scalable web applications. Each
of different implementations are good for a set of problems, but not for
every problem. Therefore well defined architectural design patterns and
adapters for storing objects are needed to provide a tested approach for
developing stable software. Relational databases are still good for handling
relations and supporting strong consistency requirements. The future of
web databases is moving from homogeneous to heterogeneous collection of
different application specific database systems.

Bibliography



48 Matti Paksula

[1] Brewer, E. A. 2000. Towards robust distributed systems (abstract).
In Proceedings of the Nineteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing (Portland, Oregon, United States,
July 16 - 19, 2000). PODC ’00. ACM, New York, NY, 7. DOI=
http://doi.acm.org/10.1145/343477.343502

[2] Gilbert, S. and Lynch, N. 2002. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News 33,
2 (Jun. 2002), 51-59. DOI= http://doi.acm.org/10.1145/564585.564601

[3] Pritchett, D. 2008. BASE: An Acid Alternative. Queue 6, 3 (May. 2008),
48-55. DOI= http://doi.acm.org/10.1145/1394127.1394128

[4] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A Structured
Storage System on a P2P Network, product presentation at SIGMOD
2008.

[5] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-
man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vo-
gels, W. 2007. Dynamo: amazon’s highly available key-value store.
In Proceedings of Twenty-First ACM SIGOPS Symposium on Op-
erating Systems Principles (Stevenson, Washington, USA, October
14 - 17, 2007). SOSP ’07. ACM, New York, NY, 205-220. DOI=
http://doi.acm.org/10.1145/1294261.1294281

[6] Morris, R. 1968. Scatter storage techniques. Commun. ACM 11, 1 (Jan.
1968), 38-44. DOI= http://doi.acm.org/10.1145/362851.362882

[7] Agrawal, P., Silberstein, A., Cooper, B. F., Srivastava, U., and Ramakr-
ishnan, R. 2009. Asynchronous view maintenance for VLSD databases.
In Proceedings of the 35th SIGMOD international Conference on Man-
agement of Data (Providence, Rhode Island, USA, June 29 - July 02,
2009). C. Binnig and B. Dageville, Eds. SIGMOD ’09. ACM, New York,
NY, 179-192. DOI= http://doi.acm.org/10.1145/1559845.1559866

[8] Message in Redis mailing list http://groups.google.com/group/redis-
db/msg/ca398a90ea78bfc5

[9] Redis home page http://code.google.com/p/redis/

[10] Armbrust, M., Lanham, N., Tu, S., Fox, A., Franklin, M., and Patter-
son, D. A. Piql: A performance insightful query language for interac-
tive applications. First Annual ACM Symposium on Cloud Computing
(SOCC)



Introd. to store data in Redis, a persistent and fast key-value database.49

[11] Acharya, S., Carlin, P., Galindo-Legaria, C., Kozielczyk, K., Ter-
lecki, P., and Zabback, P. 2008. Relational support for flexible schema
scenarios. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1289-1300. DOI=
http://doi.acm.org/10.1145/1454159.1454169


