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Abstract
The aim of this study is to empirically extend known results on long range
dependence for a separated system to 2-station tandem system. More
exactly, we study connection of a long range dependence effect at the
second station in a tandem network with moment properties of the input
and service times in both stations. Simulation results are presented, and
some related difficulties are discussed.

1 Introduction

The main motivation of this study is to empirically verify results obtained
in the paper [4]. This verification for a separate system has been presented
in [2].

We briefly recall related definitions and results. Consider a single-server
queueing system GI/G/1 with a renewal input with arrival epochs {t¢;} and
the i.i.d. interarrival times {T; = ¢;4+1 —t;} with distribution A(x) = P(T <
x) (T denotes generic interarrival). It is assumed that service times {S;} are
i.i.d with distribution B(z) = P(S < z). Denote by W; the waiting time of
customer i in queue. Recall famous Lindley’s recursion which defines the
sequence {W;}:

Wis1 = Wi+ S8 —Ti)",
where (-)* = max(0, -). Let the stability condition holds, i.e. ES/ET < 1,
or, equivalently, F(S —T) < 0. Then the sequence {W;} has a weak limit
W; = W, i — oco. Moreover, the following stochastic equality connects
this stationary limit and supremum of the associated random walk with

negative drift:
W = sup(S; — Ty).

i1
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The stationary waiting time (or delay) W is widely used as a QoS para-
meter. In particular, it is important to know the properties of the delay for
delay-sensitive systems, such as real-time voice and video traffic. We give
the following well known result from [4] defining long range dependence of
the sequence of delays in a GI/G/1 system. More exactly, provided that
ET < 00, ES? < 00 and ES* = o0,

oo
Zcorr Wo, W;) = o0. (1.1)
i=1

In practice the result (1.1) means that the waiting time process stays above
or below it’s mean value unexpectedly long. It makes difficult the use of
sample mean based estimator to estimate required parameter with a given
accuracy in reasonable simulation time [9]. An extended discussion of this
topic is in the work [§]

It is obvious that t; + W; 4+ S; is the departure instant of customer 3.
Hence, these instants define an inter-departure process,

D':ti+1+Wi+1+Sz’+1_i_VVi_Si
=Siy1 + (T, = Wi = 8;) + Wig1 = S + (T, = W; — S) 1, i > 1.

Consider a two-station tandem, where after being served in the first
single-server queue, the customer (task) enters the second system. Thus,
the output from first system is an input to the second one. For node j,
denote by {Ti(j )} interarrival times, by {Si(j )} service times and by {WZ-(] )}
waiting times, j = 1,2, and note that Tl.(z) = DZO). It is interesting to
estimate the impact of characteristics of the first station on the delay at
the second one. The main difference from first station, is that the inter-
arrival times for second station form not a renewal but rather a regenerative
process. Results on the output process can be found in [3].

The stability condition for the whole network is [12],

ETY > max(ESW ES?)),

while condition
max(ETW, ESW) > ES®),

implies stability of the second station solely, Wz@ = W® (with proper
limit W(Q)), leaving a possibility of instability of first station, W) — oo
(in probability of with probability 1).

In a stable system, the knowledge of moment properties of delay may
be useful for instance, to approximate the tail of the delay via Chebyshev’s
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inequality. A well-known (for separated station) result that the finiteness
of r 4+ 1-th moment of service time implies finiteness of the r-th moment
of waiting time is extended to a tandem network in [12]. More exactly,
for a two-station case, if ES™) > ES®) then (similar to one station case)
sufficient stability condition holds:

E (S@))TH <x = E (W(2)>r < 0.

However, if ESW < ES® | then an additional condition is placed on mo-
ments of service times at the first station:

E (SU))TH <o = E (W@))T <oo, j=1,2.

It turns out to be that the latter assumption is not only technical one
caused by the method of the proof (as it has been conjectured in [12]), but
as has been shown in [10], violation of the assumption may lead to infinite
mean stationary delay at the second node.

Even more surprising dependence of moment properties at a given sta-
tion on the properties of other stations in tandem-like networks is found
in [7] for the so-called heavy-tailed case. First recall that a random vari-
able (r.v.) X with distribution F' is called subexponential if asymptotic
equivalence holds P(X; + Xo > x) ~ 2(1 — F(x)) := 2F (), where X; 2 are
i.i.d. copies of X. A particular case is Pareto r.v. with tail distribution
(for x > xy > 0)

F(z)=2"% a>0. (1.2)
If B(z) is the tail distribution of service time S, then an integrated tail
distribution (of a stationary remaining service time S,) is defined as

Be(z) := P(Se > 2) = ElS/ B(z)dx, x> 0.

When both B(z) and B.(z) are subexponential, then we call that distri-
bution B belongs to a useful subclass S*.

The crucial result of [7] (for two-station tandem) is as follows. Assume
stability, that is p; := ES’(i)/ET(l) < 1 for i = 1,2, and let the service
time distribution at the second station belong to S*. Also assume that
P(SWM > z) = o(P(S® > z)) and that service time at the first station also
belongs to §* or is light-tailed [7]). Then

PW® > z) ~ P(S? > ).

1 —p2
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In other words, if service time at first station has lighter tail then the tail of
delay asymptotically behaves like in a single station, and previous station
does not matter.

Note that some of given above results hold for some more general net-
works.

2 Long range dependence in tandem

In this section we discuss some difficulties which arise when we try to em-
pirically verify the theoretical results mentioned in the previous section.

2.1 Pareto tail modeling

To simulate the i.i.d r.v. Xy,...,X,, with a given distribution F', we sample
i.i.d. pseudo-random numbers Uy, ..., U, and then use inverse transform.
More exactly, we use the inverse function F'~1(U;) to get the sample values
Xl'i

1

XZ'ZF_ (UZ),Z:L,TL

(It ie easy to check that obtained r.v. indeed have distribution F.) In
particular, for Pareto (tail) distribution (1.2),

X;=U"""i=1,...,n.

The problem which arises in practice is that the values of U; have limited
accuracy, say, U; > 10~? for some 8 > 1. Then the maximum value Zmax
obtained by inverse transform sampling is

Tmax < 106/0{-

(Note that in this case the sample size has to be approximately 107 .) Thus,
instead of sampling from Pareto distribution we in fact obtain truncated
Pareto distribution [5], that is

7 _ (T0Zmax)” —a —a
(l‘) - m(.f - mmax)? To S T K Tmax < 00,
max 0

with F(x) = 0 for > Zpax and F(x) = 1 for x < x9. (We mention an
asymptotic level-q test in [1] to verify the hypothesis about the truncated
Pareto distribution.) We recall that for classical Pareto (1.2) EX" = oo
for n > «. However, in our case,

Tmax a a n—o n—o
o(ToTmax)® _ . a(ToTmax)® T -z
EX" / " (a )a ¢ 1 dx ( ) mix Oa
o Lmax — Lo n—o Tmax — Lo
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Hence, if Zmax = 105/ and x¢ = 1 (for standard Pareto),

108 10(n—)B/e _ 1
pxn = 40710 ~ —2 0P (e (2.1)

n—ao 108 — 1 n—ao

For instance, let 5 = 16 (the double precision accuracy of C language
defined variable), o = 3.5 and n = 4. Substitution this in (2.1) implies

EX" ~7- 102.2857‘

This value is far from being infinite. Moreover, for our case, to have EX"
at least an order of 101°, one needs 8 ~ 70, see from (2.1). (The so-called
long arithmetics provides an arbitrary order of accuracy but sample size
1070 hard to get in a reasonable simulation time.)

Nevertheless, note that if n > a and « approaches zero, then (n — )/«

increases. Thus, for 0 < a < 2 one may get reasonable results for the value
of EX™.

2.2 Numerical results

The experiments were carried out on a High-Performance cluster [6]. The
autocorrelation coeflicients were calculated by formulae

M S0 Wo()Wil) — 750 Woli) S50, W)
L 2
MY (Wo(i) = (15 Wo ()

where W;(j) corresponds to the waiting time for task 4 in the independent
run j. Note that independent runs are preferable than a single long run in
the presence of long-range dependence [11].

The problem discussed in the previous subsection means that if in dis-
tribution (1.2) a < 4, we in fact obtain empirically finite forth moment
implying convergence of autocorrelation series. A possibility to obtain
(quasi)divergence in simulation is to take coefficient a < 2, in which case
the variance of stationary delay is (theoretically) infinite. Thus the main
conclusion is that it is difficult to verify long-range dependence of the work-
load (delay) process neither in single-server, nor in tandem case, applying
divergence of the autocovariance series stated in [4].

Nevertheless, an interesting case that leads to the divergence of auto-
correlation series is an instability of a station. Consider an M/Pareto/1
— /Pareto/1 tandem system renewal input with interarrival time 7" and
with (corresponding) Pareto service time (in more convenient for simulation
form)

9

PS>z =(1+z)"% z>0,i=1,2
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Figure 1: Convergence of autocorrelations, A = 3, u; = 3.5, uo = 4.2.

Then the mean service time is ES® = (a; —1)~!, i = 1,2. Denote A =
1/ET, p; = 1/ES® and assume that p; < A < pp. Then first station
becomes overloaded (because p1 = A/pu; > 1) and in the limit has the
output with rate p;. But because p;/ua < 1, then the second station is
stable (in limit) and we do not observe divergence of autocorrelations of
waiting times, as Fig. 1 shows. If us < A < pu1, then the first station
is stable, but the second station is unstable (since p > 1). In this case
the delays on the second station may become arbitrary high implying the
divergence of autocorrelation series, see Fig. 2.

3 Conclusion

Detection of the long-range dependence in the networking traffic is ex-
tremely important to estimate QoS provided in the network. In this note,
we verify by simulation this (second-order) property of the workload pro-
cess in the second station of a two-station tandem network. We discuss
the difficulties (caused by technical limitations) which arise when we apply
simulation to establish (under appropriate moment conditions) divergence
of the autocorrelation series, indicating theoretically the long-range depen-
dence.
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Figure 2: Divergence of autocorrelations, A = 3, uy = 4.2, us = 3.5.
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