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Abstract

We offer a computational approach to schedule development based on mod-
els and methods of idempotent algebra. The approach allows one to repre-
sent different types of precedence relationships among activities as linear
vector equations written in terms of an idempotent semiring. As a result,
many issues in project scheduling can be reduced to solving computational
problems in the idempotent algebra setting, including linear equations and
the eigenvalue-eigenvector problem. We give solutions to the problems in a
compact vector form that provides a basis for the development of efficient
computation algorithms and related software applications, including those
intended for parallel implementation.

1 Introduction

The problem of scheduling a large-scale set of activities is a key issue in
project management [1, 2]. There is a variety of project-scheduling tech-
niques developed to deal with different aspects of the problem, ranging
from the classical Critical Path Method and the Program Evaluation and
Review Technique marked the beginning of the active research in the area
in 1950s, to more recent methods of idempotent algebra [4, 5, 6, 7, 10].

We offer a new computational approach [10] to schedule development
based on implementation of models and methods of idempotent algebra.
The approach allows one to represent different types of precedence rela-
tionships among activities as linear vector equations written in terms of an
idempotent semiring. As a result, many issues in project scheduling can
be reduced to solving computational problems in the idempotent algebra
setting, including linear equations and the eigenvalue-eigenvector problem.
We give solutions to the problems in a compact vector form that provides
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a basis for the development of efficient computation algorithms and related
software applications, including those intended for parallel implementation.

The rest of the paper is organized as follows. We start with algebraic
definitions and notation, and then outline basic results that underlie subse-
quent applications of idempotent algebra. Furthermore, examples of actual
problems in project scheduling are considered. We show how to formulate
the problems in an algebraic setting, and give related algebraic solutions.
Finally, concluding remarks are given to summarize the results.

2 Definitions and Notation

We start with a brief overview of basic concepts, terms and symbols in
idempotent algebra. Further details can be found in [4, 5, 6, 7, 10].

2.1 Idempotent Semiring

Consider a set X that is equipped with two operations ⊕ and ⊗ referred
to as addition and multiplication, and has neutral elements 0 and 1 called
zero and identity. We suppose that 〈X, 0, 1,⊕,⊗〉 is a commutative semir-
ing, where addition is idempotent and multiplication is invertible. Such a
semiring is usually called idempotent semifield.

Let us define X+ = X \ {0}. Each x ∈ X+ is assumed to have its inverse
x−1. For any x ∈ X+ and integer p > 0, the power is defined in the ordinary
way,

x0 = 1, xp = xp−1 ⊗ x = x⊗ xp−1, x−p = (x−1)p, 0
p = 0.

In what follows, the multiplication sign ⊗ is omitted as is usual in
conventional algebra. The notation of power is thought of as defined in
terms of idempotent algebra. However, in the expressions that represent
exponents, we use ordinary arithmetic operations.

Since the addition is idempotent, it induces a partial order ≤ on X

according to the rule: x ≤ y if and only if x⊕ y = y. The relation symbols
are understood below in the sense of this partial order. According to the
order, it holds that has x ≥ 0 for any x ∈ X.

As a classical example of idempotent semirings (semifields), one can
consider the semiring

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉.

The semiring has the neutral elements 0 = −∞ and 1 = 0. For each x ∈
R, there exists its inverse x−1, which is equal to −x in ordinary arithmetics.
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For any x, y ∈ R, the power xy is equivalent to the arithmetic product xy.
The order induced by idempotent addition coincides with the natural linear
order on R.

The semiring Rmax,+ provides the basis for the development of algebraic
solutions to project scheduling problems in subsequent sections.

2.2 Matrix Algebra

Now consider matrices with elements in X. The set of all matrices of size
m× n is denoted by X

m×n.
The matrix with all entries equal to zero is the null matrix denoted by

0. A matrix is called regular if it has at least one nonzero element in every
row.

For any scalar x ∈ X and matrices

A = (aij) ∈ X
m×n, B = (bij) ∈ X

m×n, C = (cij) ∈ X
n×l

matrix addition and multiplication, as well as multiplication by scalars are
defined in the usual way with the expressions

{A⊕B}ij = aij ⊕ bij , {BC}ij =
n⊕

k=1

bikckj , {xA}ij = xaij .

A square matrix is called diagonal if all its off-diagonal entries are zero,
and triangular if its entries above (below) the diagonal are zero. The matrix
I = diag(1, . . . , 1) is referred to as identity matrix.

A matrix A is irreducible if and only if it cannot be put in a block
triangular form by simultaneous permutations of rows and columns.

For any square matrix A and integer p > 0, the power is defined as
usual,

A0 = I, Ap = Ap−1A = AAp−1.

For a square matrix A = (aij) ∈ X
n×n, its trace is given by

trA =
n⊕

i=1

aii.

Let A = (aij) ∈ X
m×n be a regular matrix. The pseudo-inverse matrix

of A is defined as A− = (a−ij) ∈ X
n×m, where a−ij = aji if aji 6= 0, and

aij = 0 otherwise.
Finally, consider the set X

n of all column vectors with elements in X.
The vector with all elements equal to zero is called null vector and denoted
by 0.
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For any column vector x = (x1, . . . , xn)
T 6= 0, one can define a row

vector x− = (x−1 , . . . , x
−
n ) with elements x−i = xi if xi 6= 0, and xi = 0

otherwise, i = 1, . . . , n.
We define the distance between any two vectors x,y ∈ X

n
+ with a metric

ρ(x,y) = y−x⊕ x−y.

When y = x we have the minimum distance ρ(x,x) = 1.
In the semiring R

n
max,+, the metric takes the form

ρ(x,y) = max
i
|xi − yi|,

and thus coincides with the Chebyshev metric.

3 Preliminary Results

Now we outline some basic results from [8, 9, 10] that underlie subsequent
applications of idempotent algebra to project scheduling.

3.1 The Equation Ax = d

Suppose a matrix A ∈ X
m×n and a vector d ∈ X

m are given. Let x ∈ X
n

be an unknown vector. We examine the equation

Ax = d, (3.1)

and the inequality

Ax ≤ d, (3.2)

A solution x0 to equation (3.1) or inequality (3.2) is called the maximum
solution if x0 ≥ x for all solutions x of (3.1) or (3.2).

We present a solution to (3.1) based on analysis of distance between
vectors in Xn. To simplify further formulae, we use the notation

∆ = (A(d−A)−)−d.

Lemma 1. Suppose A ∈ X
m×n is a regular matrix, and d ∈ X

m
+ is a vector

without zero components. Then it holds that

min
x∈Xn

+

ρ(Ax,d) = ∆1/2,

where the minimum is achieved at x0 = ∆1/2(d−A)−.
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Lemma 2. Under the same conditions as in Lemma 1 it holds that

min
Ax≤d

ρ(Ax,d) = min
Ax≥d

ρ(Ax,d) = ∆,

where the first minimum is achieved at x1 = (d−A)−, and the second at
x2 = ∆(d−A)−.

As a consequence of Lemma 1 and 2, we get the following result.

Theorem 1. A solution of equation (3.1) exists if and only if ∆ = 1. If
solvable, the equation has the maximum solution given by

x = (d−A)−.

Suppose that ∆ > 1. In this case equation (3.1) has no solution. How-
ever, we can define a pseudo-solution to (3.1) as a solution of the equation

Ax = ∆1/2A(d−A)−,

which is always exists and takes the form x0 = ∆1/2(d−A)−. It follows from
Lemma 1 that the pseudo-solution yields the minimum deviation between
vectors y = Ax and the vector d in the sense of the metric ρ.

Consider the problem of finding two vectors x1 and x2 that provide
the minimum deviation between both sides of (3.1), while satisfying the
respective inequalities Ax ≤ d and Ax ≥ d. As it is easy to see from
Lemma 2, these vectors are given by

x1 = (d−A)−, x2 = ∆(d−A)−.

The next statement is another consequence of the above results.

Lemma 3. For any regular matrix A and vector d without zero components,
the solution to (3.2) is given by the inequality

x ≤ (d−A)−.

A solution to equation (3.1) with an arbitrary matrix A and a vector d
is considered in [10]
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3.2 The Equation Ax⊕ b = x

Suppose a matrix A ∈ X
n×n and a vector b ∈ X

n are given, and x ∈ X
n is

an unknown vector. Consider the equation

Ax⊕ b = x, (3.3)

and the inequality
Ax⊕ b ≤ x, (3.4)

A solution to equation (3.3) is proposed based on application of a func-
tion TrA that takes each square matrix to a scalar and plays the role of
the determinant in conventional linear algebra. The function is given by

TrA =
n⊕

m=1

trAm

and exploited to examine whether the equation has a unique solution, many
solutions, or no solution.

For any A ∈ X
n×n, we define matrices A+ and A× as follows

A+ = I ⊕A⊕ · · · ⊕An−1, A× = AA+ = A⊕ · · · ⊕An.

Let a+
i be column i of A+, and a×ii be entry (i, i) of A×. Provided that

TrA = 1, we define the matrix A∗ = (a∗
i ) with the columns

a∗
i =

{
a+
i , if a×ii = 1,

0, otherwise.

If TrA 6= 1, then we take A∗ = 0.
The solution to equation (3.3) is given by the following result.

Theorem 2. Let x be the solution of equation (3.3) with an irreducible
matrix A. Then the following statements hold:

1) if TrA < 1, then there exists a unique solution x = A+b;

2) if TrA = 1, then x = A+b⊕A∗v for all v ∈ X
n;

3) if TrA > 1, then with the condition b = 0, there exists only the
solution x = 0, whereas with b 6= 0, there is no solution.

Lemma 4. Let x be the solution of inequality (3.4) with an irreducible
matrix A. Then the following statements hold:

1) if TrA ≤ 1, then x = A+(b⊕ v) for all v ∈ X
n;

2) if TrA > 1, then with the condition b = 0, there exists only the
solution x = 0, whereas with b 6= 0, there is no solution.

Related results for the case of arbitrary matrices can be found in [8, 10].
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3.3 Eigenvalues and Eigenvectors

A scalar λ is an eigenvector of a square matrix A ∈ X
n×n if there is a vector

x ∈ X
n \ {0} such that

Ax = λx.

The maximum eigenvalue is called spectral radius of A and given by

̺ =
n⊕

m=1

tr1/m(Am).

The eigenvector corresponding to ̺ takes the form

x = A∗
̺v,

where A̺ = ̺−1A, and v is any vector.

Lemma 5. For any irreducible matrix A with the spectral radius ̺, it holds
that

min
x∈Xn

+

ρ(Ax,x) = ̺⊕ ̺−1,

where the minimum is achieved at any eigenvector x corresponding to ̺.

The case of arbitrary matrices is considered in [9, 10].

4 Applications to Project Scheduling

In this section we show how to apply the algebraic results presented above
to solve scheduling problems under various constraints (for further details
on the schedule development in project management see, e.g., [1, 2]).

As the underlying idempotent semiring, we use Rmax,+ in all examples
under discussion.

4.1 Precedence Relations of the Start-to-Finish Type

Consider a project that involves n activities. Activity dependencies are as-
sumed the form of Start-to-Finish relations that do not allow an activity to
complete until some time after initiation of other activities. The schedul-
ing problem of interest is to find initiation time for all activities subject to
given constraints on their completion time.

For each activity i = 1, . . . , n, denote by xi its initiation time, and by
yi its completion time. Let di be a due date, and aij a minimum possible
time lag between initiation of activity j = 1, . . . , n and completion of i.
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Given aij and di, the completion time of activity i must satisfy the
relations

yi = di, xj + aij ≤ yi, j = 1, . . . , n,

where if aij is not actually given for some j, it is assumed to be 0 = −∞.
The relations can be combined into one equation in the initiation times

max(x1 + ai1, . . . , xn + ain) = di.

By replacing the ordinary operations with those in Rmax,+ in all equa-
tions, we get

ai1 ⊗ x1 ⊕ · · · ⊕ ain ⊗ xn = di, i = 1, . . . , n.

For simplicity, we drop the multiplication symbol ⊗, and write

ai1x1 ⊕ · · · ⊕ ainxn = di, i = 1, . . . , n.

With the notation

A =




a11 . . . a1n
...

. . .
...

an1 . . . ann


 , d =




d1
...
dn


 , x =




x1
...
xn


 ,

the scheduling problem under the start-to-finish constraints leads us to
solution of the equation

Ax = d.

Consider ∆ = (A(d−A)−)−d. According to Theorem 1, provided that
the condition ∆ = 1 = 0 is satisfied, the equation has a unique solution
x = (d−A)−.

If it appears that ∆ > 0, then one can compute approximate solutions
to the equation

x0 = ∆1/2(d−A)−, x1 = (d−A)−, x2 = ∆(d−A)−.

The completion times corresponding to these solution are given by

y0 = Ax0, y1 = Ax1 ≤ d, y2 = Ax2 ≥ d,

and have their deviation from the due dates bounded with

ρ(y0,d) = ∆1/2, ρ(y1,d) = ρ(y2,d) = ∆.

Suppose that the due date constraints may be adjusted to some extent.
As a new vector of due dates, it is natural to take a vector d′ such that



Algebraic Solutions to Scheduling Problems in Project Management 23

y1 ≤ d′ ≤ y2. In this case, deviation of the new due dates from the original
ones does not exceed ∆. The minimum deviation which is equal to ∆1/2 is
achieved at d′ = y0.

As an example, consider a project with a constraint matrix and two due
date vectors given by

A =




8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12


 , d1 =




14
11
16
15


 , d2 =




15
15
15
15


 .

Fig. 1 demonstrates a network representation of the project.
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Figure 1: An activity network with Start-to-Finish precedence relations

First we examine the equation Ax = d1. Simple calculation gives ∆1 =
(A(d−

1 A)
−)−d1 = 0. Therefore, the equation has a unique solution

x = (d−
1 A)

− = (6, 4, 5, 3)T .

Consider the equation Ax = d2. Since ∆2 = (A(d−
2 A)

−)−d2 = 4 > 0,
the equation does not have a solution. Evaluation of approximate solutions
gives

x0 = ∆
1/2
2 (d−

2 A)
− = (9, 5, 6, 5)T , y0 = Ax0 = (17, 13, 17, 17)T ,

x1 = (d−
2 A)

− = (7, 3, 4, 3)T , y1 = Ax1 = (15, 11, 15, 15)T ,

x2 = ∆2(d
−
2 A)

− = (11, 7, 8, 7)T , y2 = Ax2 = (19, 15, 19, 19)T .

4.2 Precedence Relations of the Start-to-Start Type

Suppose there is a project consisting of n activities and operating under
Start-to-Start precedence constraints that determine the minimum (maxi-
mum) allowed time intervals between initiation of activities.
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For each activity i = 1, . . . , n, let bi be an early possible initiation time,
and let aij be a minimum possible time lag between initiation of activity
j = 1, . . . , n and initiation of i. The problem is to find the earliest initiation
time xi for every activity i so as to provide for the relations

bi ≤ xi, aij + xj ≤ xi, j = 1, . . . , n,

which can be replaced with one equation

max(max(x1 + ai1, . . . , xn + ain), bi) = xi.

Representation in terms of Rmax,+, gives the scalar equations

ai1x1 ⊕ · · · ⊕ ainxn ⊕ bi = xi, i = 1, . . . , n.

With the notation A = (aij), b = (b1, . . . , bn)
T , x = (x1, . . . , xn)

T we
arrive at a problem that is to solve the equation

Ax⊕ b = x.

For simplicity, assume the matrix A to be irreducible. It follows from
Theorem 2 that if TrA ≤ 1 = 0 then the equation has a nontrivial solution
given by x = A+b⊕A∗v for any vector v.

Consider a project with start-to-start relations and examine two cases,
with and without early initiation time constraints imposed. Let us define
a matrix and two vectors as follows

A =




0 −2 0 0

0 0 3 −1
−1 0 0 −4
2 0 0 0


 , b1 = 0, b2 =




1
1
2
1


 .

A graph representation of the project is depicted in Fig. 2.
Let us first calculate the initiation time of activities in the project when

b = b1 = 0 (that is, without early initiation time constraints given). Under
this assumption, the equation takes the form Ax = x.

As it is easy to see, the matrix A is irreducible and TrA = 0. Therefore,
the equation has a solution.

Simple algebra gives

A+ = A× =




0 −2 1 −3
2 0 3 −1
−1 −3 0 −4
2 0 3 0


 , A∗ =




−2 −3
0 −1
−3 −4
0 0


 .
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Figure 2: An activity network with Start-to-Start precedence relations

Note that, since A+ and A× coincide, one should define A∗ = A+.
However, considering that the first three columns are proportional, we take
only one of them.

The solution to the equation is given by

x = A∗v =




−2 −3
0 −1
−3 −4
0 0


v, v ∈ R

2
max,+.

Consider the case with the vector b2 and the equation taking the form
Ax⊕ b2 = x. Now we have

A+b2 =




3
5
2
5


 , x =




3
5
2
5


⊕




−2 −3
0 −1
−3 −4
0 0


v, v ∈ R

2
max,+.

4.3 Mixed Precedence Relations

Consider a project that has both Start-to-Finish and Start-to-Start con-
straints. Let A1 be a given Start-to-Finish constraint matrix, d a vector of
due dates, and x an unknown vector of activity initiation time. To meet
the constraints, the vector x must satisfy the inequality

A1x ≤ d.

Furthermore, there are also Start-to-Start constraints defined by a con-
straint matrix A2. This leads to the equation in x

A2x = x.
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Suppose that the equation has a solution x = A∗
2v. Substitution of the

solution into the above inequality gives

A1A
∗
2v ≤ d.

Since the maximum solution to the last inequality is v = (d−A1A
∗
2)

−,
the solution to the whole problem is written in the form

x = A∗
2(d

−A1A
∗
2)

−.

As an illustration, we evaluate the solution to the problem under the
conditions

A1 =




8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12


 , A2 =




0 −2 0 0

0 0 3 −1
−1 0 0 −4
2 0 0 0


 ,

and
d = (13, 11, 15, 15)T .

By using results of previous examples, we successively get

A1A
∗
2 =




10 9
8 8
12 11
12 12


 , (d−A1A

∗
2)

− =

(
3
3

)
.

Finally, we have

x = A∗
2(d

−A1A
∗
2)

− = (1, 3, 0, 3)T .

4.4 Minimization of the Maximum Flow Time

Assume that a project operates under Start-to-Finish constraints. For each
activity in the project, consider the time interval between its initiation
and completion, which is usually referred to as the flow time and also as
turnaround time or processing time.

In practice, one can be interested in constructing a schedule that min-
imizes the maximum flow time over all activities in the project. With x

standing for a vector of initiation time, and A for a constraint matrix, we
arrive at a problem formulated in terms of Rmax,+ to find

min
x∈Rn

ρ(Ax,x).
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It follows from Lemma 5 that the above minimum is equal to the ̺⊕̺−1,
where ̺ is the spectral radius of A, and it is achieved at the vector given
by x = A∗

̺v for any vector v.

Suppose a vector d is given to represent activity due dates. Consider
a problem of evaluating the latest initiation time for all activities so as to
provide both the due date constraints and the minimum flow time condition.

By combining the due date constraints represented in the form

Ax ≤ d

with the solution of the minimization problem, we have the inequality

AA∗
ρv ≤ d.

With the maximum solution to the inequality v = (d−AA∗
ρ)

−, we get
the solution of the whole problem

x = A∗
ρ(d

−AA∗
ρ)

−.

Let us evaluate the solution with the constraint matrix and due date
vector defined as

A =




2 4 4
2 3 5
3 2 3


 , d =




9
8
9


 .

First we get ρ = 4, and define the matrix

Aρ =



−2 0 0
−2 −1 1
−1 −2 −1


 .

Furthermore, we have the matrices

A+
ρ = A∗

ρ =




0 0 1
0 0 1
−1 −1 0


 , A∗

ρ =




1
1
0


 .

Finally, we arrive at the solution

x = A∗
ρ(d

−AA∗
ρ)

− =




4
4
3


 .



28 Dr. Nikolai K. Krivulin

5 Conclusion

We have presented an approach that exploits idempotent algebra to solve
computational problems in project scheduling. It is shown how to reformu-
late the problems in an algebraic setting, and then find related solutions
based on appropriate results in the idempotent algebra theory. The so-
lutions are given in a compact vector form that provides a basis for the
development of efficient computation algorithms and software applications,
including those intended for parallel implementation.
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