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Abstract
We discuss the application of the regenerative simulation to estimate the
loss probability in a queueing system with finite buffer which is fed by a
Brownian input (Bi). Some numerical examples are also included. This
work is supported by Russian Foundation for Basic research, project No
10-07-00017 and done in the framework of the Strategy development Pro-
gram for 2012-2016 ”PetrSU complex in the research-educational space of
European North: strategy of the innovation development.

1 Introduction

In this work we are interested in systems with small or moderate size buffers,
because it is motivated by real network applications, which have stringent
requirements to queueing delay. So the loss rate prediction can be useful
to provide suitable level of Quality of Service.

To motivate our interest to systems fed by Bi, we note that appropri-
ately scaled superposition of large number of identically distributed (i.i.d.)
on-off sources with finite variances converges weakly to Brownian motion
(Bm) provided first, number of sources M → ∞, and then scaling factor
T →∞ (see [5, 8] for more details).

This result gives formal motivation for the following definition of Bi,
which is used below:

A(t) = mt+
√
amB(t), (1.1)

where m is the mean input rate, and Bm {B(t), t ≥ 0, } describes random
fluctuations of the input around its linearly increasing mean, a - some
constant, see [6].
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2 Queue with Brownian input

It is known that the workload Q(t) can be calculated by the following
Lindley-type recursion for the finite buffer system [6]:

Q(t) = min((Q(t− 1)− C +m+
√
am(B(t)−B(t− 1)))+, b), t = 1, 2, · · · ,(2.1)

where (x)+ = max(0, x).

A typical sample path of the workload process (2.1) is presented in
Figure 1 (where C = 1, m = 0.7, b = 3).
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Figure 1: Finite buffer system with Bi sample path

3 Regenerative method

In this section, we describe in brief the method of regenerative simulation
and the weakest known condition under which the regenerative method
can be applied for the confidence estimation. A process X = {Xt, t ∈ T},
where T = [0,∞) (or T = {0, 1, . . . }) is called regenerative process if there
exists an infinite sequence of instants 0 = β0 < β1 < β2 < · · · (regeneration
points) such that the segments Gn = (Xt, βn−1 ≤ t < βn) (regeneration
cycles) are i.i.d. The cycle periods βn+1 − βn, n ≥ 0, are also i.i.d. and we
denote by β generic regeneration period.

For definiteness, we consider a discrete-time positive recurrent process
X (that is Eβ <∞) and assume that regeneration cycle length β is aperi-
odic (P(β = 1) > 0). Then the weak limit Xn ⇒ X as n → ∞ exists such
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that P(X < ∞) = 1. Moreover, if f is a measurable function, then the
following statement holds:

lim
n→∞

1

n

n∑

i=0

f(Xi) =
E[
∑β−1

i=0 f(Xi)]

Eβ
≡ r.

It is also assumed that E[
∑β−1

i=0 |f(Xi)|] <∞. (Note that an evident analog
for continuous-time process also exists. More details can be found in [1].)

To estimate the unknown parameter r (steady-state performance mea-
sure), we group the data belonging to the same regenerative cycle to obtain
the i.i.d. enlarged variables

Yk :=

βk−1∑

n=βk−1

f(Xn), k ≥ 1.

We now define the main sample-mean ratio-type estimator as follows:

rn ≡
Y n

αn
,

where αn is the sample mean cycle period,

Y n =
1

n

n∑

i

Yi,

and n is the number of completed regeneration cycles obtained during
simulation. Let us also denote the variance of the enlarged variable as
σ2 = E(Y − rβ)2.

If the (minimal sufficient) condition

0 < E(Y − rβ)2 <∞

holds, then the following Regenerative Central Limit Theorem can be ap-
plied [2]:

n1/2αn[rn − r]⇒ σN(0, 1), n→∞.

This leads to the following 100(1− γ)% asymptotic confidence interval for
the unknown (steady-state) performance measure r:

[
rn −

zγs(n)

αn
√
n
, rn +

zγs(n)

αn
√
n

]
, (3.1)

where

P (N(0, 1) > zγ) =
1− γ

2
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and s2(n) is the empirical variance, which converges with probability 1 to
the variance

s2(n)→ σ2,

when the number of observed regeneration cycles n→∞.

4 Regenerative structure and simulation results

Using regenerative approach, we present the way of loss rate estimation,
which can be applied in system Bi/D/1/n. First we construct regeneration
points for the content process. (More details can be found in [3].) Let
β0 = 0 and

βk+1 = min{t > βk : Q(t− 1) = 0, Q(t) > 0, k ≥ 1}, (4.1)

where Q(t) is the queue content at the end of slot t. It is important to
stress that in continuous-time setting construction of regenerations meets
a difficulty caused by structure of the Brownian input paths [4].

Now we denote by Lb(t) the total load lost in time interval [0, t]. Denote
by EL the mean load lost per regenerative cycle and let EA be the mean load
arrived per regenerative cycle. Applying regenerative method, we obtain
the following representation for the steady-state loss probability

lim
t→∞

Lb(t)

A(t)
=

EL

EA
:= Pℓ.

To apply confidence estimation based on regenerative central limit theorem
to estimate probability Pℓ := r, we treat processes {Lb(t), t ≥ 0} and
{A(t), t ≥ 0} as cumulative processes with embedded regenerations defined
by recursion (4.1), see [7]. Then we use regenerative simulation to estimate
limit ratios

r1 := lim
t→∞

Lb(t)

t
=

EL

Eβ
, r2 := lim

t→∞

A(t)

t
=

EA

Eβ
,

separately, and then use equality r = r1/r2. Denote by Ii = [ai, bi] con-
fidence interval (with a confidence level 1 − α) for ri, i = 1, 2. Then it is
easy to see that unknown parameter r is covered by the confidence interval
I = [a1/b2, b1/a2] (provided a2 > 0) with probability

P(r ∈ I) ≥ P(ri ∈ Ii, i = 1, 2)

≥ 1

2

(
P(r1 ∈ I1) + P(r2 ∈ I2)− P(r1 6∈ I1)− P(r2 6∈ I2)

)

= 1− 2α.
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Figure 2: 90% Confidence interval for Pℓ in Bi/D/1/4

In our experiments we have used α = 0.05, so resulting confidence interval
has level 90%.

Figure 2 shows 90% confidence interval for the loss probability in the
system Bi/D/1/b with Brownian input (with rate m = 0.7, service rate
C = 1 and buffer size b = 4) as a function of the simulation length (in
terms of regeneration cycles).

Figure 3 shows 90% confidence interval for the loss probability as a
function of the buffer size. The following parameters are used: C = 1; m =
0.7; N = 106 (where N denotes the number of simulated time slots).

Finally, figure 4 shows 90% confidence interval for the loss probability
as a function of the service rate. The following parameters are used: b =
4; m = 0.7; N = 106.

To explain an increasing of the confidence length on Figures (3), (4), we
recall that use log scale. Moreover, shift below of the center of the intervals
caused by decreasing of the loss probability as the buffer size increases.

We note that using regenerations leads to a reliable estimation due to
the i.i.d. property of the regeneration cycles.

5 Conclusion

The results of our study can be summarised as follows:

A key observation is that Brownian process has i.i.d. increments and
it allows us to construct confidence interval for the loss probability based
on simulation of the i.i.d. regeneration cycles. Using such a simulation we
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Figure 3: Dependence of log estimate of Pℓ on buffer size b
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Figure 4: Dependence of log estimate of Pℓ on service rate C
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present a few numerical examples.
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