
AMICT’2010-2011. pp. 5–14 5

Typewritten symbols recognition using

Genetic Programming

Prof. Igor L. Bratchikov, Alexei A. Popov

Faculty of Applied Mathematics and Control Processes,
Saint-Petersburg State University

Universitetskii prospekt 35, Petergof, Saint-Petersburg, 198504, Russia

E-mail: {braigor@yandex.ru, popov.lex@mail.ru}

Abstract

Genetic programming is a new technique in Artificial Intelligence based
on the evolutionary algorithms and inspired by biological evolution. As a
matter of fact, genetic programming is a special case of genetic algorithms,
where each individual is a computer program. Therefore, this technique
could be used to optimize a population of computer programs to solve the
problem.
This report demonstrates how genetic programming can be used to solve
the problem of optical character recognition, specifically typewritten sym-
bols. At present, there are many approaches to solve this problem, but all
of them have their own limitations.
The approach given in this report could be successful at learning, maintain-
ing and upgrading rules for typewritten symbols recognition, particularly
in disputable situations. Specific fitness functions, terminals and functions
that satisfy the requirements of a main problem were considered.
This research presents the successful application of genetic programming
to a difficult and topical task.

c© Prof. Igor L. Bratchikov, Alexei A. Popov, 2010



6 Prof. Igor L. Bratchikov, Alexei A. Popov

1 Introduction

Genetic programming (GP) is a new technique in Artificial Intelligence
based on the evolutionary algorithms and inspired by biological evolution.
Basically it is a special case of genetic algorithms, where each individual
is a computer program (usually represented in memory as a tree struc-
tures). This technique could be used to optimize a population of computer
programs to solve the problem.

This paper investigates the use of genetic programming for typewrit-
ten symbols recognition. The term ’recognition’ means the mechanical or
electronic translation of scanned images of printed or typewritten symbols
into machine-encoded text. In practice, it is extremely hard to generate,
maintain and upgrade the system that would be successful in solving the
problem of the character recognition especially as such system would give
the human-competitive results. Generally there is a rule set for each sym-
bol that is presumably true only for that symbol. The main point is that
any changes in a current rule set have to be tested on very large sets to
insure that all examples of the symbol are accepted and all others (wrong
ones) are rejected. Therefore it would be great to design and develop the
system that could easily, fluently and correctly recognize any typewritten
characters.

The main purpose of the research is to estimate the application of GP
for the problem of typewritten symbols recognition.

The principle goals are the following:

• To determine the superiorities (advantages) and disadvantages of GP
in comparison with the other approaches;

• To design and develop the terminals and functions, fitness measure,
certain parameters for controlling the run, the termination criteria
and method for designating the results of the run.

GP has been successfully applied to the simple character recognition
problem [2, 3, 4, 5, 6]. John Koza evolved programs that could recognize
an ’I’ and a ’L’ letters using Boolean templates and control code for moving
the templates. This approach involved low-resolution characters, e.g. 4x6
or 5x5. Later on Andre extended this approach by using programs that
were good for recognition of digits using co-evolved two-dimensional feature
detectors [1, 2]. However, this approach involved low-resolution symbols as
well. So both approaches were good at recognition the limited symbol sets
only.



Typewritten symbols recognition using Genetic Programming 7

Therefore the general task is to define whether GP is a successful tech-
nique in solving the problem of character recognition or not. And in case
of positive result, the principal goal is to apply such technique by designing
and developing the GP-based system that could solve the problem of type-
written symbol recognition. Moreover, such a system can be regarded as
the first stage of the development of a system for recognition of handwritten
symbols.

Let us consider the main principles of GP, its specificity, features and
benefits.

2 Typewritten symbols recognition

2.1 What is GP?

Let us continue by saying a few words about GP. Basically it is an auto-
mated method for creating a computer program from a high-level problem
statement of a specific task. Genetic programming starts from a statement
of ”what needs to be done” and automatically creates a computer program
to solve the problem. GP is a machine learning technique used to opti-
mize a population of computer programs according to a fitness landscape
designed to evaluate the program’s ability to solve a given computational
task [4].

GP evolves computer programs traditionally represented in memory as
tree structures. Trees can be easily evaluated in a recursive manner. Every
tree node has an operator function and every terminal node has an operand
that makes mathematical expressions easy to evolve and evaluate. Thus
traditionally GP favors the use of programming languages that naturally
embody tree structures (for example, Lisp; other functional programming
languages are also suitable).

The fact that genetic programming can evolve entities that are com-
petitive with human-produced results suggests that genetic programming
can be used as an automated invention machine to create new and useful
patentable inventions.

2.2 How does it work?

One of the central challenges of computer science is to force a computer
to do what needs to be done, without specifying how to do it. Genetic
programming starts with a set of thousands of randomly created computer
programs. This population of programs is progressively evolved over a se-
ries of generations. The evolutionary search uses the Darwinian principle



8 Prof. Igor L. Bratchikov, Alexei A. Popov

of natural selection (survival of the fittest) and analogs of various natu-
rally occurring operations, including crossover (sexual recombination), mu-
tation, gene duplication, gene deletion. Sometimes genetic programming
also employs developmental processes by which an embryo grows into fully
developed organism.

Therefore GP is a domain-independent method that genetically breeds
a population of computer programs to solve a problem. Specifically, such
technique iteratively transforms a population of computer programs into
a new generation of programs by applying analogs of naturally occurring
genetic operations. In addition, GP can automatically create a general solu-
tion to a problem in the form of a graphical structure whose nodes or edges
represent components and where the parameter values of the components
are specified by mathematical expressions containing free variables.

However to achieve the goal the user (human) has to specify the follow-
ing preparatory steps:

1 the set of terminals (the independent variables of the problem) for
each branch of the program;

2 the set of functions for each branch of the program;

3 the fitness measure (for implicitly or explicitly measuring the fitness
of individuals in the population);

4 certain parameters for controlling the run;

5 termination criterion and method for designating the result of the
run.

The figure below shows the aforesaid preparatory steps for the basic
version of genetic programming. Those steps are the user-supplied input
to the GP-system. The computer program represents the output of the
genetic programming system.

Genetic programming iteratively transforms a population of computer
programs into a new generation of the population by applying analogs of
naturally occurring genetic operations. These operations are applied to
some individuals selected from the population. They are stochastically se-
lected to participate in the genetic operations based on their fitness (the
third preparatory step). The iterative transformation of the population is
executed inside the main generational loop of the run of genetic program-
ming.

The first two preparatory steps specify the ingredients that are avail-
able to create the computer programs. A run of genetic programming is



Typewritten symbols recognition using Genetic Programming 9

Figure 1: How does GP work

a competitive search among a diverse population of programs composed of
the available functions and terminals.

The important thing to remember is that GP is a highly iterative pro-
cess. It involves nested loops of procedures. The goal is to evolve suc-
cessively better individuals with every generation. Theoretically we might
want to run GP indefinitely, but due to limited computational power, we
need to define some kind of termination criteria.

Generally the termination criteria has two parts, a successful fitness or
a maximum number of generations. We provide GP with some number
and say, if you evolve an individual with fitness better than or equal to
that number, accept it and stop the run. This means that we have found
a solution that is good enough. Alternatively, we want to stop GP from
running too long if it is not progressing. We find that the probability of
making further progress drops with number of generations passed, so we
define some maximum number of generations. If we haven’t succeeded by
so many generations, it might be time to stop and try again.

The whole procedure can be described as follows:

1. Randomly create an initial population (generation 0) of individual
computer programs composed of the available functions and termi-
nals.

2. Iteratively perform the following sub-steps (called a generation) on
the population until the termination criterion is satisfied:

a Execute each program in the population and ascertain its fitness



10 Prof. Igor L. Bratchikov, Alexei A. Popov

(explicitly or implicitly) using the problem’s fitness measure.

b Select one or two individual program(s) from the population
with a probability based on fitness (with reselection allowed) to
participate in the genetic operations in (c).

c Create new individual program(s) for the population by applying
the following genetic operations with specified probabilities:

I Reproduction: Copy the selected individual program to the
new population.

II Crossover : Create new offspring program(s) for the new
population by recombining randomly chosen parts from two
selected programs.

III Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen part
of one selected program.

IV Architecture-altering operations: Choose an architecture-
altering operation from the available repertoire of such op-
erations and create one new offspring program for the new
population by applying the chosen architecture-altering op-
eration to one selected program.

3. After the termination criterion is satisfied, the single best program in
the population produced during the run (the best-so-far individual)
is harvested and designated as the result of the run. If the run is
successful, the result may be a solution (or approximate solution) to
the problem.

2.3 Adding GP to the problem

Please see the flowchart of GP in Figure 2.

Now let’s get back to our research, and especially to the character recog-
nition problem. The data source was database of typewritten symbols. It
consists of testing and training subsets.

The symbols are centered and represented by a matrix of black and
white pixels (20 pixels wide and 30 pixels in height). The first step in the
recognition of any symbol is to extract the boundary pixels from the bitmap.
This can be done using a quick one-pass raster scan method [1] Each element
in a list contains row and column information for a boundary pixel. The
second step is to close holes that are small enough to be accounted for by
noise. The outer boundary of the symbol is then split into four segments
(left, right, bottom and top). Therefore, the maximum and minimum row



Typewritten symbols recognition using Genetic Programming 11

Figure 2: Typical GP scheme

and column are calculated for each hole, for each segment, and for the
symbol as a whole. In addition, the number of pixels in each hole stored,
and the segments are ranked according to their number of pixels.

It is assumed that solutions are always comparable and that, given a
pair of them, we are always able to point the better one, unless they have
the same value of the evaluation function.

For some hypothesis the evaluation function returns its accuracy of
classification on the training set. Incomparability involves a partial order
in the solution space and the possibility of existence of many best solutions
at the same time. We can prevent the algorithm from losing good solutions
by replacing the scalar evaluation function with a pairwise comparison of
solutions.

Let’s define formally the outranking relation between two solutions (hy-



12 Prof. Igor L. Bratchikov, Alexei A. Popov

potheses), given the sets of examples correctly classified by these hypothe-
ses. Outranking means that first hypothesis is at least as good as a second
one [5]. This condition has to hold separately and simultaneously for ex-
amples representing some decision classes. Therefore someone might ask
an obvious question, how to select the best solutions?

Tournament selection scheme cannot work properly in solving this prob-
lem due to the fact, that the incomparability decreases the selection pres-
sure, so some tournaments might remain undecided. Therefore we have to
select some non-outranked solutions (hypotheses).

The solutions (programs-candidates) performing image analysis and
recognition are evaluated on a set of training cases (images), called fitness
cases. Let us now consider some estimated values. Thus, the population
size was 2000 (that’s a quite enough indeed). The probability of mutation
equals to 0.05 (it is a common or standard value). The value of maximal
depth of a randomly generated tree (initialization): 3 or 4 (it depends in
common case). Maximal number of generations: 100 (stopping condition;
in some cases this value could be increased or decreased). Training set size
equals to 200 (100 images per each class). We used the tournament selection
which means that the selection works by selecting a number of individuals
from the population at random, a tournament, and then selecting only the
best of those individuals. Tournament sizes tend to be small relative to
the population size. The ratio of tournament size to population size can be
used as a measure of selective pressure. Note that a tournament size of 1
would be equivalent to selecting individuals at random and a tournament
size equal to the population size would be equivalent to selecting the best
individual at any given point. The selective pressure of tournament selec-
tion can be adjusted by means of the tournament size parameter, which
makes it a more flexible selective procedure than fitness-proportional se-
lection [4]. Therefore, the tournament selection works by creating a tight
selective pressure on a small local group of individuals. Neither of these
two selection procedures is better than the other for every problem. There
are also a whole slew of other selection procedures that may or may not be
based on either of these.

Because we only care about whether one individual is better than an-
other, to save processing, we only need to consider standardized fitness for
this selection procedure. Recall that better individuals have lower standard
fitnesses.



Typewritten symbols recognition using Genetic Programming 13

3 Conclusion

In conclusion we would like to mention that GP has some evident superior-
ity in comparison with the other approaches such statistics, neural networks
and the other techniques, though it is not an ideal approach to solve the
problem. In theory it could be successfully used simultaneously with the
other methods in some disputable issues.

The main result obtained in the experiment is that the aforesaid search
technique solves the problem in common cases. In addition the accuracy of
classification on both testing and training sets was increased, although the
results did deviate sometimes. Furthermore the results were false positive
or negative at times. The system recognized the given symbols as a rule
except some complicated cases. For example, the recognition of the digit
’0’ and letter ’O’; or the recognition of the digit ’1’ and letter ’l’. Another
interesting fact is that the good solutions were commonly defended from
discarding. Therefore we expect that the better results will be obtained
after performing some modifications.

Although the research is made, its subject could be extended. There
are some problems and aspects that were not consider in the current paper.
First of all it will be great to make a deskewing and font normalization of
the characters before their recognition. The second main task in perspective
is to design and develop the recognition system (programming complex or
toolbox). Once it is done it will be a big improvement to recognize not
only the typewritten symbols but also handwritten characters. It will also
be interesting to try to use in practice the approach given in this paper
simultaneously with the other techniques such as the neural networks and
the other techniques.



14 Prof. Igor L. Bratchikov, Alexei A. Popov

Bibliography

[1] Andre D., A fast one pass raster-scan method for boundary extraction
in binary images. Canon Research Center Technical Report, Palo Alto,
California, 1993.

[2] Andre D., Learning and upgrading rules for an OCR system using Ge-
netic Programming. Stanford University and Canon Research Center
of America, Stanford, 1994.

[3] Breunig M. M., Location independent pattern recognition using Genetic
Programming. In Koza, J. R., editor, Genetic Algorithms and Genetic
Programming at Stanford, Stanford Bookstore, Stanford University,
1995.

[4] Koza J. R., Genetic Programming: on the programming of computers
by means of natural selection. MIT Press, Cambridge 1994.

[5] Krawiec K., Genetic Programming using partial order of solutions for
pattern recognition tasks. Proceedings of II National Conference ’Com-
puter Recognition Systems’ KOSYR’2001, pp. 427–433.

[6] Poli R., Genetic Programming for image analysis. School of Computer
Science, The University of Birmingham, 1996


