
Systems Engineering. Ch.2: 
Software Systems Engineering

1

Dmitry G. Korzun, 2013 1

Systems EngineeringSystems Engineering

Chapter 2:Chapter 2:

Software Systems Software Systems 
EngineeringEngineering

Dmitry G. Korzun, 2013 2

OutlineOutline

§ 1. Nature of Software

§ 2. Concept Development

§ 3. Engineering Development

Dmitry G. Korzun, 2013 3

§§1. Nature of Software1. Nature of Software

�� System softwareSystem software

�� Services for other softwareServices for other software

�� Operating systems and middlewareOperating systems and middleware

�� Embedded softwareEmbedded software

�� Resides within a larger system and implements Resides within a larger system and implements 
specific functionsspecific functions

�� Satellites, defense systems, energy systemsSatellites, defense systems, energy systems

�� Application softwareApplication software

�� StandStand--alone program that solves a specific needalone program that solves a specific need

�� Text editors, media playersText editors, media players

Dmitry G. Korzun, 2013 4

Types of Software SystemsTypes of Software Systems

� Software-embedded systems

� Hybrid combination of hardware, software, and people

� Hardware performs principal actions, software is supporting

� Vehicles, computer-controlled manufacturing machinery

� Software-intensive systems

� Network of computers and users (any information system)

� Software on computers perform virtually all of the system 
functionality, in support of human operators

� WWW is an extreme case

� Data-intensive computing systems

� Large-scale computing resources

� Supercomputers, parallel computing

� Weather analysis

Dmitry G. Korzun, 2013 5

Sources of SoftwareSources of Software

1.1. OutsourcingOutsourcing

2.2. IT service companiesIT service companies

3.3. Packaged software producersPackaged software producers

4.4. Vendors of enterpriseVendors of enterprise--wide solution wide solution 
softwaresoftware

5.5. Cloud computingCloud computing

6.6. Open sourceOpen source

7.7. InIn--HouseHouse

Dmitry G. Korzun, 2013 6

OutsourcingOutsourcing

� Practice when one organization develops or runs a computer 
application for another organization

� Extreme 1: a company develops and runs your application on 
its computers

� You only supply input and take output

� Payroll systems

� Extreme 2: a hired company runs your applications at your 
site on your computers

� Big business

� Cost-effective solution

� India, China, Latin America

� Nearshoring: no more than one time zone away



Systems Engineering. Ch.2: 
Software Systems Engineering

2

Dmitry G. Korzun, 2013 7

IT service companiesIT service companies

� Development of custom information systems 
for internal use

� Your company

� needs an information system, but

� does not have the expertise/personnel to develop

� IBM, HP

Dmitry G. Korzun, 2013 8

Packaged software Packaged software 
producersproducers

� Packaged software aims at many market 
segments

� General, broad-based packages

� Narrow, niche packages

� Software runs on many different platforms

� Software is difficult for modification to meet 
specific needs of a particular organization

� Typical rule: 70% need satisfaction

� Microsoft

Dmitry G. Korzun, 2013 9

EnterpriseEnterprise--wide solutionswide solutions

� Complete software solutions that support all 
operations and business processes of the 
organization

� Enterprise resource planning (ERP) systems

� All parts of a business process is integrated in a unified 
information system

� Integrated modules:

� Each supports an individual business function, e.g., 
accounting, manufacturing, or human resources

� Single repository of data for all aspects of business 
processes

� Oracle, SAP, 1C
Dmitry G. Korzun, 2013 10

Cloud computingCloud computing

� Renting (licensing) applications from third-party providers who 
run the applications at remote sites

� Access to the applications through the Internet (or virtual private 

networks)

� Apps provider buys, installs, maintains, and upgrades the applications

� Users pay on a per-use basis or they license the software for fixed period

� Users do not have to invest in the hardware and software resources

� Benefits for your company:

� Freeing internal IT staff

� Gaining access to applications faster than via internal development

� Achieving lower-cost access to corporate-quality applications

� Concerns: reliability, security, compliance with government 
regulations

� Google apps

Dmitry G. Korzun, 2013 11

Open sourceOpen source

� Not just a final product but the source code itself

� Development by community, not by a particular 
company

� Money made with open source

� Provision of maintenance and other services

� One version is free, a featured version is commercial

� Examples:

� Linux (~15% servers, ~2% desktops), mySQL, Firefox

� SourceForge.net

Dmitry G. Korzun, 2013 12

InIn--househouse

� Development of an information system from 
scratch for internal corporate use

� Now, a small fraction of efforts of internal IT 
departments

� Higher maintenance burden than other 
development options

� Hybrid solutions:
in-house + purchased components



Systems Engineering. Ch.2: 
Software Systems Engineering

3

Dmitry G. Korzun, 2013 13

Software ReuseSoftware Reuse

� The use of previously developed software resources 
in new applications

� Great savings: Less code writing and testing
� Object-oriented development

� Component-based development

� Corporate code repository

� Approaches: Table 2-3 from [Hoffer et.al 2011], p.42
� Ad hoc: individual driven

� Facilitated: encouraged by organization

� Managed: mandated by organization

� Designed: development of reusable code

Dmitry G. Korzun, 2013 14

Software Development Life Software Development Life 
Cycle ModelsCycle Models

� Fundamental phases

� Linear model

� Incremental model

� Evolutionary model

� Agile development

§§2. Concept Development2. Concept Development

� Activities that define the requirements and 
architecture of the software elements of 
the system

� Analysis and Design

� Demarcation line between analysis and 
design may vary substantially

Dmitry G. Korzun, 2013 15 Dmitry G. Korzun, 2013 16

Needs AnalysisNeeds Analysis

� A feasible development approach is available

� The system is worth the effort to develop and 
produce it

� Software-intensive systems:

� Software automates functions that have been performed by 
people or hardware

� At less cost, in less time, and more accurately

� Tradeoff the gains in performance and costs against 
the effort to develop and deploy the new system

� Extensive market analysis

Dmitry G. Korzun, 2013 17

Requirements AnalysisRequirements Analysis

� Software-Embedded system components

� Component-aware requirements at the system and 
subsystem levels

� Allocation to computer system configuration items

� Software-intensive systems

� Formulation of the overall system requirements is subject to 
analysis and participation by software systems engineers

� Customers with little understanding of what software 
automation is capable of doing

� Prototyping, RAD, evolutionary development – an early 
version of the system for experimentation by users

Dmitry G. Korzun, 2013 18

Requirements Generation Requirements Generation 
ProcessProcess

� Iterations of 4 critical steps:

� Elicitation (language barrier between users and developers)

� Analysis and Negotiation (necessity, consistency, 
completeness, feasibility)

� Documentation

� Validation (every requirement is consistent, coherent, 
unambiguous)

� Use cases (understanding of sequence of events and 
activities that need to be performed)

� Interface requirements (association of each input and 
output with requirements)



Systems Engineering. Ch.2: 
Software Systems Engineering

4

Dmitry G. Korzun, 2013 19

System ArchitectureSystem Architecture

� Partition into relatively independent subsystems 
that may be designed, developed, produced, and 
tested as separate system building blocks

� Achievement of a high degree of “Modularity”

� Binding: loose and tight (grouping of closely 
related blocks)

� Coupling: tight and loose (interactions between 
blocks are minimized)

� Architecture modeling

� Structured analysis and design

� Object-oriented analysis and design

Dmitry G. Korzun, 2013 20

Structured Analysis and Structured Analysis and 
DesignDesign

� Functional flow block diagram (FFBD)

� Data flow diagram (DFD)

� Entity relation diagram (ERD)

� State transition diagram (STD)

� Data dictionary

Dmitry G. Korzun, 2013 21

ObjectObject--Oriented Analysis Oriented Analysis 
and Designand Design

� Class encapsulates data and functions that operate 
on them

� Self-contained, robust, reusable program building 
blocks

� Arranging related classes into groups (subsystems 
or packages)

� Defining all of the relations/responsibilities within 
and among the groups

� UML: unified modeling language

§§3. Engineering Development3. Engineering Development

� Coding and unit testing

� Software integration and test

� Software engineering management

Dmitry G. Korzun, 2013 22

Dmitry G. Korzun, 2013 23

Program CodeProgram Code

� Code and program structure

� Reflection of the architecture

� Commenting

� Self-documentation

� Self-testing

� Accompanied docs (README, CHANGELOG, NEWS, …)

� Programming languages

� Fourth-generation languages (4GL): coupled with 
database and structured query language (SQL)

� Special-purpose languages: mimic the problem domain 
where possible

Dmitry G. Korzun, 2013 24

Programming Support ToolsProgramming Support Tools

� Editors

� Debuggers

� Compilers

� Linkers and loaders

� IDE, SDK

� Prototyping tools



Systems Engineering. Ch.2: 
Software Systems Engineering

5

Dmitry G. Korzun, 2013 25

Software product designSoftware product design

� Hardware: transformation of development prototype 
into reliable, maintainable, and producible units

� Software: no “production” process

� Software product = usable by others

� Critical characteristics:

� Maintainability 

� User interface

� Performance and other non-functional requirements

� TIME(Software product) ~ 3*TIME(working program) 

Dmitry G. Korzun, 2013 26

Unit TestingUnit Testing

� Focused on individual software components

� By programmers themselves

� “white box” tests

� Known internal details

� Exercise critical parts

� Automation (tools available in many IDEs)

� Self-testing (built into the code)

� Regularly running

Dmitry G. Korzun, 2013 27

Software Integration and TestSoftware Integration and Test

� A large fraction of the entire development effort

� Verification

� Process of determining whether the software implements 
the functionality and features correctly and accurately 

� Validation

� Process of determining whether the software satisfies the 
users’ or customers’ needs

� Whether we implemented the right product

� Testing is a primary method for verification and 
validation

Dmitry G. Korzun, 2013 28

Integration TestingIntegration Testing

� Performed on a partially assembled system

� System components are progressively 
linked together

� “Black box” tests

� Regression testing

� Repeating a selected fraction of tests to ensure 
the discovery of newly created discrepancies

� Careful selectivity of the test cases to be 
repeated

Dmitry G. Korzun, 2013 29

System TestingSystem Testing

� Validation tests

� Alpha testing

� In a controlled environment at the developer’s 
side

� Beta testing

� At a customer’s side, without the developers

Dmitry G. Korzun, 2013 30

Software Engineering Software Engineering 
ManagementManagement

� CASE tools

� Requirements management tools

� Software metrics tools

� Integrated development support tools



Systems Engineering. Ch.2: 
Software Systems Engineering

6

Dmitry G. Korzun, 2013 31

Software Configuration Software Configuration 
Management (CM)Management (CM)

Difference between hardware and software

� Software abstractness and lack of well-defined components 
makes it difficult to understand

� Software has more interfaces; their penetration is deeper and 
hence is difficult to trace

� Any change may propagate deep into the system

� Any change may require retesting the whole system

� When a software system fails, it often breaks down abruptly

� The flexibility of software renders making a software change 
deceptively easy

Dmitry G. Korzun, 2013 32

Quantitative MeasurementsQuantitative Measurements

� Project metrics

� Success of project management

� Human resources

� Process metrics

� Correspondence to process model/standard

� Capability maturity assessment

� Capability Maturity Model (CMM): 5 maturity levels

� Technical metrics

� Assessing quality of the product

� Code, Documentation, Testing

Dmitry G. Korzun, 2013 33

Materials for seminarMaterials for seminar

� Presentation on recent models of software 
development

� Family of agile development methods

� Extreme programming

� Scrum

� …


