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§1. Nature of Software

m  System software
m  Services for other software
= Operating systems and middleware
m  Embedded software
= Resides within a larger system and implements
specific functions
= Satellites, defense systems, energy systems
m  Application software
= Stand-alone program that solves a specific need
= Text editors, media players
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Types of Software Systems

m Software-embedded systems
= Hybrid combination of hardware, software, and people
= Hardware performs principal actions, software is supporting
= Vehicles, computer-controlled manufacturing machinery
m Software-intensive systems
= Network of computers and users (any information system)

= Software on computers perform virtually all of the system
functionality, in support of human operators

= WWW is an extreme case
m Data-intensive computing systems
= Large-scale computing resources
= Supercomputers, parallel computing
= Weather analysis
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Sources of Software

Outsourcing
IT service companies
Packaged software producers

Vendors of enterprise-wide solution
software

Cloud computing
6. Open source
7. In-House
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Outsourcing

m Practice when one organization develops or runs a computer
application for another organization
m Extreme 1: a company develops and runs your application on
its computers
= You only supply input and take output
= Payroll systems
m Extreme 2: a hired company runs your applications at your
site on your computers
= Big business
= Cost-effective solution
= India, China, Latin America
= Nearshoring: no more than one time zone away
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IT service companies

s Development of custom information systems
for internal use

= Your company
= needs an information system, but

= does not have the expertise/personnel to develop

= IBM, HP
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Packaged software
producers

s Packaged software aims at many market
segments

= General, broad-based packages
= Narrow, niche packages

m Software runs on many different platforms

m Software is difficult for modification to meet
specific needs of a particular organization

= Typical rule: 70% need satisfaction
= Microsoft
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Enterprise-wide solutions

Complete software solutions that support all
operations and business processes of the
organization

Enterprise resource planning (ERP) systems

= All parts of a business process is integrated in a unified
information system

Integrated modules:

= Each supports an individual business function, e.g.,
accounting, manufacturing, or human resources

= Single repository of data for all aspects of business
processes

Oracle, SAP, 1C
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Cloud computing

Renting (licensing) applications from third-party providers who
run the applications at remote sites

= Access to the applications through the Internet (or virtual private
networks)

= Apps provider buys, installs, maintains, and upgrades the applications

= Users pay on a per-use basis or they license the software for fixed period
= Users do not have to invest in the hardware and software resources
Benefits for your company:

= Freeing internal IT staff

= Gaining access to applications faster than via internal development

= Achieving lower-cost access to corporate-quality applications
Concerns: reliability, security, compliance with government
regulations

Google apps
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Open source

Not just a final product but the source code itself

Development by community, not by a particular
company

Money made with open source

= Provision of maintenance and other services

= One version is free, a featured version is commercial
Examples:

= Linux (~15% servers, ~2% desktops), mySQL, Firefox

= SourceForge.net
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In-house

Development of an information system from
scratch for internal corporate use

Now, a small fraction of efforts of internal IT
departments

Higher maintenance burden than other
development options

Hybrid solutions:
in-house + purchased components
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Software Development Life

Software Reuse Cycle Models
m The use of previously developed software resources
in new applications = Fundamental phases

m Great savings: Less code writing and testing
= Object-oriented development
= Component-based development
= Corporate code repository
m Approaches: Table 2-3 from [Hoffer et.al 2011], p.42

= Ad hoc: individual driven m Agile development
= Facilitated: encouraged by organization
L]
L]

Linear model

Incremental model

Evolutionary model

Managed: mandated by organization
Designed: development of reusable code
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§2. Concept Development Needs Analysis

= A feasible development approach is available

s The system is worth the effort to develop and
produce it

m Activities that define the requirements and
architecture of the software elements of

the system . .
WAL LM L m Software-intensive systems:
n
Y | 1 g . = Software automates functions that have been performed by
m Demarcation line between analysis and people or hardware
design may vary substantially = At less cost, in less time, and more accurately
m Tradeoff the gains in performance and costs against
the effort to develop and deploy the new system
m Extensive market analysis
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Requirements Generation
Requirements Analysis Process
m Software-Embedded system components m Iterations of 4 critical steps:
= Component-aware requirements at the system and = Elicitation (language barrier between users and developers)
subsystem levels = Analysis and Negotiation (necessity, consistency,
= Allocation to computer system configuration items completeness, feasibility)
m Software-intensive systems = Documentation
= Formulation of the overall system requirements is subject to = Validation (every requirement is consistent, coherent,
analysis and participation by software systems engineers unambiguous)
= Customers with little understanding of what software m Use cases (understanding of sequence of events and
automation is capable of doing activities that need to be performed)
. Pr°t9typi?€tlrf] RADIt:W'fU“O”a”/_‘::Welol;’_meft‘)t . ag early = Interface requirements (association of each input and
version of the system for experimentation by users output with requirements)
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System Architecture

m Partition into relatively independent subsystems
that may be designed, developed, produced, and
tested as separate system building blocks

m Achievement of a high degree of “"Modularity”

= Binding: loose and tight (grouping of closely
related blocks)

m Coupling: tight and loose (interactions between
blocks are minimized)

m Architecture modeling
= Structured analysis and design
= Object-oriented analysis and design
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Structured Analysis and
Design

= Functional flow block diagram (FFBD)
= Data flow diagram (DFD)

m Entity relation diagram (ERD)

m State transition diagram (STD)

= Data dictionary
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Object-Oriented Analysis
and Design

s Class encapsulates data and functions that operate
on them

m Self-contained, robust, reusable program building
blocks

m Arranging related classes into groups (subsystems
or packages)

= Defining all of the relations/responsibilities within
and among the groups

m UML: unified modeling language
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§3. Engineering Development

m Coding and unit testing
m Software integration and test
m Software engineering management
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Program Code

m Code and program structure

= Reflection of the architecture

= Commenting

= Self-documentation

= Self-testing

= Accompanied docs (README, CHANGELOG, NEWS, ...)
m Programming languages

= Fourth-generation languages (4GL): coupled with
database and structured query language (SQL)

= Special-purpose languages: mimic the problem domain
where possible
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Programming Support Tools

m Editors

= Debuggers

m Compilers

m Linkers and loaders
= IDE, SDK

= Prototyping tools
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Software product design

s Hardware: transformation of development prototype
into reliable, maintainable, and producible units

m Software: no “production” process
Software product = usable by others
Critical characteristics:

= Maintainability

= User interface

= Performance and other non-functional requirements
TIME(Software product) ~ 3*TIME(working program)
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Unit Testing

= Focused on individual software components
m By programmers themselves

= “white box” tests

= Known internal details

= Exercise critical parts

Automation (tools available in many IDEs)
Self-testing (built into the code)

Regularly running
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Software Integration and Test

= A large fraction of the entire development effort
= Verification

= Process of determining whether the software implements
the functionality and features correctly and accurately

= Validation

= Process of determining whether the software satisfies the
users’ or customers’ needs

= Whether we implemented the right product

m Testing is a primary method for verification and
validation
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Integration Testing

m Performed on a partially assembled system

m System components are progressively
linked together

m "Black box” tests
m Regression testing

= Repeating a selected fraction of tests to ensure
the discovery of newly created discrepancies

= Careful selectivity of the test cases to be
repeated
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System Testing

= Validation tests
m Alpha testing

= In a controlled environment at the developer’s
side

m Beta testing
= At a customer’s side, without the developers
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Software Engineering
Management

m CASE tools

m Requirements management tools

m Software metrics tools

m Integrated development support tools
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Software Configuration
Management (CM)

Difference between hardware and software

= Software abstractness and lack of well-defined components
makes it difficult to understand

Software has more interfaces; their penetration is deeper and
hence is difficult to trace

= Any change may propagate deep into the system
Any change may require retesting the whole system
When a software system fails, it often breaks down abruptly

The flexibility of software renders making a software change
deceptively easy
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Quantitative Measurements

= Project metrics

= Success of project management

= Human resources
m Process metrics

= Correspondence to process model/standard

= Capability maturity assessment

= Capability Maturity Model (CMM): 5 maturity levels
m Technical metrics

= Assessing quality of the product

= Code, Documentation, Testing
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Materials for seminar

m Presentation on recent models of software
development

m Family of agile development methods
m Extreme programming
= Scrum
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