Systems Engineering. Ch.2:
Software Systems Engineering

Systems Engineering

Chapter 2:

Software Systems
Engineering

Dmitry G. Korzun, 2013 1

Outline

§ 1. Nature of Software
§ 2. Concept Development
§ 3. Engineering Development

Dmitry G. Korzun, 2013

§1. Nature of Software

m System software
m Services for other software
= Operating systems and middleware
m Embedded software
= Resides within a larger system and implements
specific functions
= Satellites, defense systems, energy systems
m Application software
= Stand-alone program that solves a specific need
= Text editors, media players

Dmitry G. Korzun, 2013 3

Types of Software Systems

m Software-embedded systems
= Hybrid combination of hardware, software, and people
= Hardware performs principal actions, software is supporting
= Vehicles, computer-controlled manufacturing machinery
m Software-intensive systems
= Network of computers and users (any information system)

= Software on computers perform virtually all of the system
functionality, in support of human operators

= WWW is an extreme case
m Data-intensive computing systems
= Large-scale computing resources
= Supercomputers, parallel computing
= Weather analysis
Dmitry G. Korzun, 2013

Sources of Software

Outsourcing
IT service companies
Packaged software producers

Vendors of enterprise-wide solution
software

Cloud computing
6. Open source
7. In-House

P W N

Ul

Dmitry G. Korzun, 2013 5

Outsourcing

m Practice when one organization develops or runs a computer
application for another organization
m Extreme 1: a company develops and runs your application on
its computers
= You only supply input and take output
= Payroll systems
m Extreme 2: a hired company runs your applications at your
site on your computers
= Big business
= Cost-effective solution
= India, China, Latin America
= Nearshoring: no more than one time zone away

Dmitry G. Korzun, 2013

Systems Engineering. Ch.2:
Software Systems Engineering

IT service companies

s Development of custom information systems
for internal use

= Your company
= needs an information system, but

= does not have the expertise/personnel to develop

= IBM, HP

Dmitry G. Korzun, 2013 7

Packaged software
producers

s Packaged software aims at many market
segments

= General, broad-based packages
= Narrow, niche packages

m Software runs on many different platforms

m Software is difficult for modification to meet
specific needs of a particular organization

= Typical rule: 70% need satisfaction
= Microsoft

Dmitry G. Korzun, 2013 8

Enterprise-wide solutions

Complete software solutions that support all
operations and business processes of the
organization

Enterprise resource planning (ERP) systems

= All parts of a business process is integrated in a unified
information system

Integrated modules:

= Each supports an individual business function, e.g.,
accounting, manufacturing, or human resources

= Single repository of data for all aspects of business
processes

Oracle, SAP, 1C

Dmitry G. Korzun, 2013 9

Cloud computing

Renting (licensing) applications from third-party providers who
run the applications at remote sites

= Access to the applications through the Internet (or virtual private
networks)

= Apps provider buys, installs, maintains, and upgrades the applications

= Users pay on a per-use basis or they license the software for fixed period
= Users do not have to invest in the hardware and software resources
Benefits for your company:

= Freeing internal IT staff

= Gaining access to applications faster than via internal development

= Achieving lower-cost access to corporate-quality applications
Concerns: reliability, security, compliance with government
regulations

Google apps
Dmitry G. Korzun, 2013 10

Open source

Not just a final product but the source code itself

Development by community, not by a particular
company

Money made with open source

= Provision of maintenance and other services

= One version is free, a featured version is commercial
Examples:

= Linux (~15% servers, ~2% desktops), mySQL, Firefox

= SourceForge.net
Dmitry G. Korzun, 2013 11

In-house

Development of an information system from
scratch for internal corporate use

Now, a small fraction of efforts of internal IT
departments

Higher maintenance burden than other
development options

Hybrid solutions:
in-house + purchased components

Dmitry G. Korzun, 2013 12

Systems Engineering. Ch.2:
Software Systems Engineering

Software Development Life

Software Reuse Cycle Models
m The use of previously developed software resources
in new applications = Fundamental phases

m Great savings: Less code writing and testing
= Object-oriented development
= Component-based development
= Corporate code repository
m Approaches: Table 2-3 from [Hoffer et.al 2011], p.42

= Ad hoc: individual driven m Agile development
= Facilitated: encouraged by organization
L]
L]

Linear model

Incremental model

Evolutionary model

Managed: mandated by organization
Designed: development of reusable code

Dmitry G. Korzun, 2013 13 Dmitry G. Korzun, 2013 14

§2. Concept Development Needs Analysis

= A feasible development approach is available

s The system is worth the effort to develop and
produce it

m Activities that define the requirements and
architecture of the software elements of

the system . .
WAL LM L m Software-intensive systems:
n
Y | 1 g . = Software automates functions that have been performed by
m Demarcation line between analysis and people or hardware
design may vary substantially = At less cost, in less time, and more accurately
m Tradeoff the gains in performance and costs against
the effort to develop and deploy the new system
m Extensive market analysis
Dmitry G. Korzun, 2013 15 Dmitry G. Korzun, 2013 16
Requirements Generation
Requirements Analysis Process
m Software-Embedded system components m Iterations of 4 critical steps:
= Component-aware requirements at the system and = Elicitation (language barrier between users and developers)
subsystem levels = Analysis and Negotiation (necessity, consistency,
= Allocation to computer system configuration items completeness, feasibility)
m Software-intensive systems = Documentation
= Formulation of the overall system requirements is subject to = Validation (every requirement is consistent, coherent,
analysis and participation by software systems engineers unambiguous)
= Customers with little understanding of what software m Use cases (understanding of sequence of events and
automation is capable of doing activities that need to be performed)
. Pr°t9typi?€tlrf] RADIt:W'fU“O”a”/_‘::Welol;’_meft‘)t . ag early = Interface requirements (association of each input and
version of the system for experimentation by users output with requirements)
Dmitry G. Korzun, 2013 17 Dmitry G. Korzun, 2013 18

Systems Engineering. Ch.2:
Software Systems Engineering

System Architecture

m Partition into relatively independent subsystems
that may be designed, developed, produced, and
tested as separate system building blocks

m Achievement of a high degree of “"Modularity”

= Binding: loose and tight (grouping of closely
related blocks)

m Coupling: tight and loose (interactions between
blocks are minimized)

m Architecture modeling
= Structured analysis and design
= Object-oriented analysis and design

Dmitry G. Korzun, 2013 19

Structured Analysis and
Design

= Functional flow block diagram (FFBD)
= Data flow diagram (DFD)

m Entity relation diagram (ERD)

m State transition diagram (STD)

= Data dictionary

Dmitry G. Korzun, 2013 20

Object-Oriented Analysis
and Design

s Class encapsulates data and functions that operate
on them

m Self-contained, robust, reusable program building
blocks

m Arranging related classes into groups (subsystems
or packages)

= Defining all of the relations/responsibilities within
and among the groups

m UML: unified modeling language

Dmitry G. Korzun, 2013 21

§3. Engineering Development

m Coding and unit testing
m Software integration and test
m Software engineering management

Dmitry G. Korzun, 2013 22

Program Code

m Code and program structure

= Reflection of the architecture

= Commenting

= Self-documentation

= Self-testing

= Accompanied docs (README, CHANGELOG, NEWS, ...)
m Programming languages

= Fourth-generation languages (4GL): coupled with
database and structured query language (SQL)

= Special-purpose languages: mimic the problem domain
where possible

Dmitry G. Korzun, 2013 23

Programming Support Tools

m Editors

= Debuggers

m Compilers

m Linkers and loaders
= IDE, SDK

= Prototyping tools

Dmitry G. Korzun, 2013 24

Systems Engineering. Ch.2:
Software Systems Engineering

Software product design

s Hardware: transformation of development prototype
into reliable, maintainable, and producible units

m Software: no “production” process
Software product = usable by others
Critical characteristics:

= Maintainability

= User interface

= Performance and other non-functional requirements
TIME(Software product) ~ 3*TIME(working program)

Dmitry G. Korzun, 2013 25

Unit Testing

= Focused on individual software components
m By programmers themselves

= “white box” tests

= Known internal details

= Exercise critical parts

Automation (tools available in many IDEs)
Self-testing (built into the code)

Regularly running

Dmitry G. Korzun, 2013 26

Software Integration and Test

= A large fraction of the entire development effort
= Verification

= Process of determining whether the software implements
the functionality and features correctly and accurately

= Validation

= Process of determining whether the software satisfies the
users’ or customers’ needs

= Whether we implemented the right product

m Testing is a primary method for verification and
validation

Dmitry G. Korzun, 2013 27

Integration Testing

m Performed on a partially assembled system

m System components are progressively
linked together

m "Black box” tests
m Regression testing

= Repeating a selected fraction of tests to ensure
the discovery of newly created discrepancies

= Careful selectivity of the test cases to be
repeated

Dmitry G. Korzun, 2013 28

System Testing

= Validation tests
m Alpha testing

= In a controlled environment at the developer’s
side

m Beta testing
= At a customer’s side, without the developers

Dmitry G. Korzun, 2013 29

Software Engineering
Management

m CASE tools

m Requirements management tools

m Software metrics tools

m Integrated development support tools

Dmitry G. Korzun, 2013 30

Systems Engineering. Ch.2:
Software Systems Engineering

Software Configuration
Management (CM)

Difference between hardware and software

= Software abstractness and lack of well-defined components
makes it difficult to understand

Software has more interfaces; their penetration is deeper and
hence is difficult to trace

= Any change may propagate deep into the system
Any change may require retesting the whole system
When a software system fails, it often breaks down abruptly

The flexibility of software renders making a software change
deceptively easy

Dmitry G. Korzun, 2013 31

Quantitative Measurements

= Project metrics

= Success of project management

= Human resources
m Process metrics

= Correspondence to process model/standard

= Capability maturity assessment

= Capability Maturity Model (CMM): 5 maturity levels
m Technical metrics

= Assessing quality of the product

= Code, Documentation, Testing

Dmitry G. Korzun, 2013 32

Materials for seminar

m Presentation on recent models of software
development

m Family of agile development methods
m Extreme programming
= Scrum

Dmitry G. Korzun, 2013 33

