

§1. What is Systems Engineering?

- A system is a set of interrelated components working together toward some common objective
- Guiding the engineering of complex systems
- Applying scientific principles to practical ends; as the design, construction and operation of efficient and economical structures, equipment, and systems

Dmitry G. Korzun, 2013

Difference from traditional engineering disciplines Focus on the system as a whole; it emphasizes its total operation and external factors Customer needs, operational environment, interfacing systems, logistics support requirements, operating personnel, etc.

- Leading the concept development
 - Qualitative judgments balancing a variety of incommensurate quantities and utilizing experience, especially when dealing with new technology
- Bridging the traditional engineering disciplines and gaps between specialities
 - Coordinate the design of each individual component to assure that the interactions and interfaces are compatible and mutually supporting

Dmitry G. Korzun, 2013

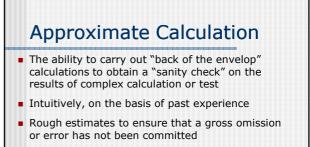
Project management
Exploratory stage: a new system concept is evolved to meet a recognized need or to exploit a technological opportunity
A dedicated team to lead and coordinate the activity -> project

- SysEng is an inherent part of project management
 - Setting objectives
 - Guiding execution
 - Evaluating results
 - Prescribing corrective actions

Dmitry G. Korzun, 2013

Origins and Basic Factors

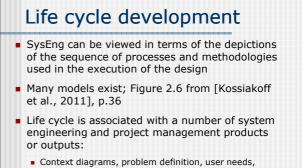
- Effects of World War II
 - Rapid growth of technology in mechanics and automation
 - the 1950s and 1960s: distinct discipline
- Advancing technology
- Opportunities for increasing system capabilities
- Competition
 - Seeking superior solutions
- Specialization
 - Partitioning the system into building blocks corresponding to specific product types
 - Strict management of the interfaces and interactions
 - Dmitry G. Korzun, 2013


Multidisciplinary Knowledge

- System development project is "Tower of Babylon"
- Many specialists in different disciplines

- Collective efforts to produce a successful new system
- Systems engineers provide linkages that enable disparate groups to function as a team
- Interdisciplinary knowledge is a small fraction of the depth necessary to work in the field

Dmitry G. Korzun, 2013


- Derivation of an order of magnitude result to serve as a check
- If a check fails then go back to make a careful examination of the assumptions and conditions Dmitry G. Korzun, 2013

Skeptical Positive Thinking

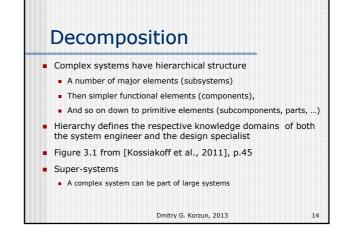
- Skeptical: tempering the traditional optimism of design specialist (regarding to success of a chosen design approach)
- Positive: reaction in the face of failure of a selected technique/approach
 - Healthy skepticism of the conditions under which the unexpected failure occurred
 - Looking for alternative solutions (due to the power of multidisciplinary knowledge)

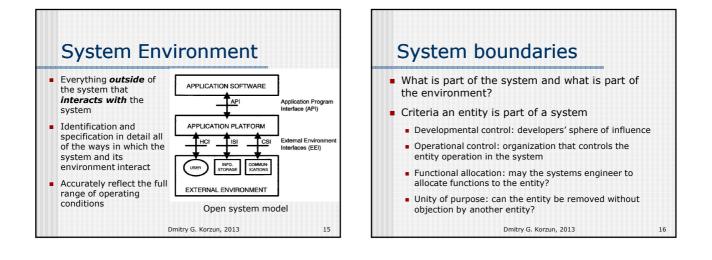
Dmitry G. Korzun, 2013

11

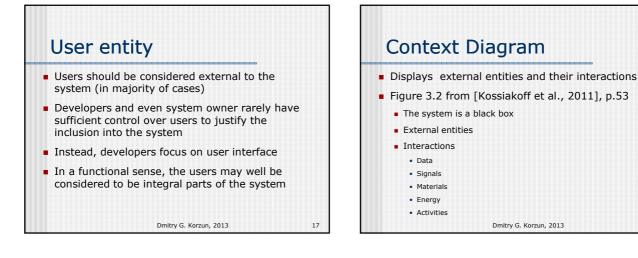
10

12

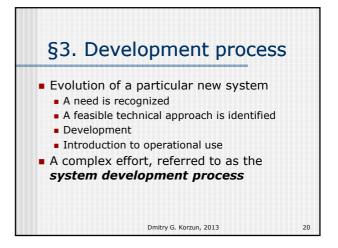

§2. Structure of Complex Systems

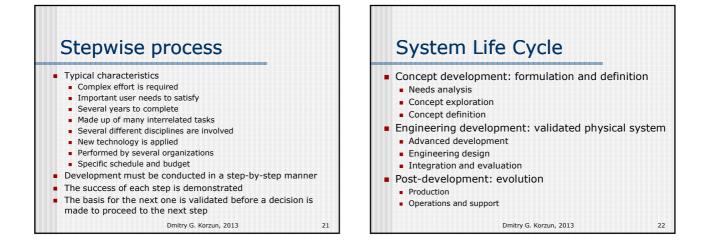

- SysEng knowledge must be sufficient to recognize such factors as program risks, technological performance limits, interfacing requirements
- Trade-off analysis among design alternatives
- Examination of structural hierarchy of modern systems: identifiable types of building blocks that
 - make up the majority of systems

stems


Represent the lower working level

Dmitry G. Korzun, 2013


13



18

Interfaces and Interactions

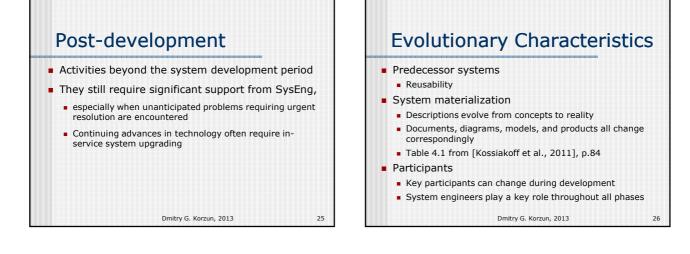
- Interfaces: external and internal
- SysEng: management of interfaces
 - Identification and description of interfaces as part of system concept definition
 - Coordination and control of interfaces to maintain system integrity during development, production, and subsequent system enhancements
- Interactions
 - Between two individual elements through their interface
 - Multiple participants
 Dmitry G. Korzun, 2013

23

19

Concept Development

- Analysis and planning that is necessary to establish
 - The need for a new system,
 - The feasibility of its realization
 - The specific system architecture to best satisfy the needs
- Also the principal objectives include
- Market analysis for a new system
 - Development of any new technology called for by the selected system concept and validation of its capability to meet the requirements
- SysEng leads this development


Dmitry G. Korzun, 2013

Engineering Development

- Transformation of the selected concept into hardware/software solutions:
 - A prototype system satisfying the requirements of performance, reliability, maintainability, and safety
- Build and test of production models
 - The system for economical production and use
 - Demonstration of its operational suitability
- SysEng guides the development

Dmitry G. Korzun, 2013

24

27

29

Systems Engineering Method

 Systematic application of the scientific approach to the engineering of a complex system

- Four basic activities
 - Requirements analysis: Problem definition
 - Functional definition: functional analysis, allocation

Dmitry G. Korzun, 2013

- Physical definition: synthesis, physical analysis, allocation
- Design validation: verification and evaluation

Requirements analysis

Identification of requirements

- Organization and interpretation
 - System model: design choices made and validated in the preceding phases
 Requirements (specification): design, performance, interface features to be developed on the next phase
 - Specific progress each component must achieve on the next phase
- Clarification, correction, quantification
- Requirements are often incomplete, inconsistent, vague
- Interaction with prospective users to gain first-hand understanding of their needs
- Firm basis from which the nature and location of design changes needed to meet the requirements may be defined

Dmitry G. Korzun, 2013

28

30

Functional definition

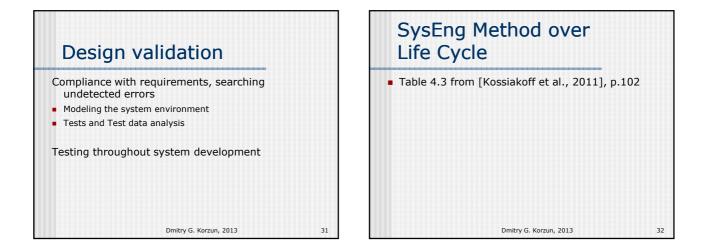
Translation of requirements into functions

- Translation into function and allocation to components
- Decomposition and allocation of each iterative set of requirements and functions for implementation at the next lower level of system definition

Dmitry G. Korzun, 2013

- Trade-off analysis
 - Postulated alternatives are examined

Functional interactions


- Definition of the functional and physical interconnection and interfacing of building blocks
- Modular architectures

Physical definition

Synthesis alternative (physical) implementations

Dmitry G. Korzun, 2013

- Alternative components analysis
- Selection of preferred approach
- Interface definition

33

Materials for seminar

- http://en.wikipedia.org/wiki/Systems_engineering
- http://www.sie.arizona.edu/sysengr/whatis/whatis. html

Dmitry G. Korzun, 2013

- Systems Engineering Guidebook for ITS. Ver.3 <u>http://www.fhwa.dot.gov/cadiv/seqb/</u>
- Online course materials, e.g., <u>http://alison.com/courses/Systems-Engineering</u>